Open
Description
Here, I try to contrast two experiments. normal training VS training without RMSD. I thought as long as the label and affinity label is given, the training wouldn't be different a lot. However, the RMSD-free training resulted in a bizarre performance:
I used the same args and gninatypes files to train model from crossdock_default2018.caffemodel using default2018.model(modified).
The rmsd columns in RMSD-free types are removed, and it's like:
0 3.906 pdb2019_refi_train_gninatypes/4u6w/4u6w_rec.gninatypes redock_default2018_pdbbind_v2019_docked_gninatypes/4u6w_docked_7.gninatypes
1 5.47 pdb2019_refi_train_gninatypes/1gi1/1gi1_rec.gninatypes pdb2019_refi_train_gninatypes/1gi1/1gi1_ligand.gninatypes
And this is the model data layer, I comment the top rmsd_true
; In test I set has_rmsd false; In train I set balanced true, stratify_receptor false, has_rmsd false:
layer {
name: "data"
type: "MolGridData"
top: "data"
top: "label"
top: "affinity"
# top: "rmsd_true"
include {
phase: TEST
}
molgrid_data_param {
source: "TESTFILE"
batch_size: 50
dimension: 23.5
resolution: 0.500000
shuffle: false
ligmap: "completelig"
recmap: "completerec"
balanced: false
has_affinity: true
has_rmsd: false
root_folder: "DATA_ROOT"
}
}
layer {
name: "data"
type: "MolGridData"
top: "data"
top: "label"
top: "affinity"
# top: "rmsd_true"
include {
phase: TRAIN
}
molgrid_data_param {
source: "TRAINFILE"
batch_size: 50
dimension: 23.5
resolution: 0.500000
shuffle: true
balanced: true
jitter: 0.000000
ligmap: "completelig"
recmap: "completerec"
stratify_receptor: false
stratify_affinity_min: 0
stratify_affinity_max: 0
stratify_affinity_step: 1.000000
has_affinity: true
has_rmsd: false
random_rotation: true
random_translate: 6
root_folder: "DATA_ROOT"
}
}
And the rmsd layer is also deleted.
layer {
name: "rmsd"
type: "AffinityLoss"
bottom: "affinity_output"
bottom: "affinity"
top: "rmsd"
...
Metadata
Metadata
Assignees
Labels
No labels