-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathcompute_averages.py
153 lines (137 loc) · 4.62 KB
/
compute_averages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Computes average over dimensions of a forecast dataset.
Example of getting the (average) vertical profile of temperature, by latitude.
```
export BUCKET=my-bucket
export PROJECT=my-project
python scripts/compute_averages.py \
--input_path=gs://weatherbench2/datasets/era5/1959-2022-6h-64x32_equiangular_with_poles_conservative.zarr \
--output_path=gs://$BUCKET/datasets/era5/$USER/temperature-vertical-profile.zarr \
--runner=DataflowRunner \
-- \
--project=$PROJECT \
--averaging_dims=time,longitude \
--variables=temperature \
--temp_location=gs://$BUCKET/tmp/ \
--setup_file=./setup.py \
--requirements_file=./scripts/dataflow-requirements.txt \
--job_name=compute-vertical-profile-$USER
```
"""
from absl import app
from absl import flags
import apache_beam as beam
from weatherbench2 import metrics
import xarray as xr
import xarray_beam as xbeam
INPUT_PATH = flags.DEFINE_string('input_path', None, help='Input Zarr path')
OUTPUT_PATH = flags.DEFINE_string('output_path', None, help='Output Zarr path')
RUNNER = flags.DEFINE_string('runner', None, 'beam.runners.Runner')
AVERAGING_DIMS = flags.DEFINE_list(
'averaging_dims',
None,
help=(
'Comma delimited list of dimensions to average over. Required. If'
' "latitude" is included, the averaging with be area weighted.'
),
)
TIME_DIM = flags.DEFINE_string(
'time_dim', 'time', help='Name for the time dimension to slice data on.'
)
TIME_START = flags.DEFINE_string(
'time_start',
'2020-01-01',
help='ISO 8601 timestamp (inclusive) at which to start evaluation',
)
TIME_STOP = flags.DEFINE_string(
'time_stop',
'2020-12-31',
help='ISO 8601 timestamp (inclusive) at which to stop evaluation',
)
LEVELS = flags.DEFINE_list(
'levels',
None,
help=(
'Comma delimited list of pressure levels to compute spectra on. If'
' empty, compute on all levels of --input_path'
),
)
VARIABLES = flags.DEFINE_list(
'variables',
None,
help=(
'Comma delimited list of data variables to include in output. '
'If empty, compute on all data_vars of --input_path'
),
)
FANOUT = flags.DEFINE_integer(
'fanout',
None,
help='Beam CombineFn fanout. Might be required for large dataset.',
)
NUM_THREADS = flags.DEFINE_integer(
'num_threads',
None,
help='Number of chunks to read/write in parallel per worker.',
)
# pylint: disable=expression-not-assigned
def _impose_data_selection(ds: xr.Dataset) -> xr.Dataset:
if VARIABLES.value is not None:
ds = ds[VARIABLES.value]
selection = {
TIME_DIM.value: slice(TIME_START.value, TIME_STOP.value),
}
if LEVELS.value:
selection['level'] = [float(l) for l in LEVELS.value]
ds = ds.sel({k: v for k, v in selection.items() if k in ds.dims})
return ds
def main(argv: list[str]):
source_dataset, source_chunks = xbeam.open_zarr(INPUT_PATH.value)
source_dataset = _impose_data_selection(source_dataset)
template = xbeam.make_template(
source_dataset.isel({d: 0 for d in AVERAGING_DIMS.value}, drop=True)
)
target_chunks = {
k: v for k, v in source_chunks.items() if k not in AVERAGING_DIMS.value
}
if 'latitude' in AVERAGING_DIMS.value:
weights = metrics.get_lat_weights(source_dataset)
else:
weights = None
with beam.Pipeline(runner=RUNNER.value, argv=argv) as root:
chunked = root | xbeam.DatasetToChunks(
source_dataset,
source_chunks,
split_vars=True,
num_threads=NUM_THREADS.value,
)
if weights is not None:
chunked = chunked | beam.MapTuple(
lambda k, v: (k, v * weights.reindex_like(v))
)
(
chunked
| xbeam.Mean(AVERAGING_DIMS.value, skipna=False, fanout=FANOUT.value)
| xbeam.ChunksToZarr(
OUTPUT_PATH.value,
template,
target_chunks,
num_threads=NUM_THREADS.value,
)
)
if __name__ == '__main__':
app.run(main)
flags.mark_flag_as_required(['averaging_dims'])