-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathcompute_derived_variables.py
295 lines (267 loc) · 9.29 KB
/
compute_derived_variables.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pyformat: mode=pyink
r"""Add derived variables to dataset and save as new file.
Example Usage:
```
export BUCKET=my-bucket
export PROJECT=my-project
export REGION=us-central1
python scripts/compute_derived_variables.py \
--input_path=gs://weatherbench2/datasets/era5/1959-2022-6h-64x32_equiangular_with_poles_conservative.zarr \
--output_path=gs://$BUCKET/datasets/era5/$USER/1959-2022-6h-64x32_equiangular_with_poles_conservative_with_derived_vars.zarr \
--runner=DataflowRunner \
-- \
--project=$PROJECT \
--region=$REGION \
--temp_location=gs://$BUCKET/tmp/ \
--setup_file=./setup.py \
--requirements_file=./scripts/dataflow-requirements.txt \
--job_name=compute-derived-variables-$USER
```
"""
import ast
from absl import app
from absl import flags
import apache_beam as beam
from weatherbench2 import derived_variables as dvs
from weatherbench2 import flag_utils
import xarray as xr
import xarray_beam as xbeam
_DEFAULT_DERIVED_VARIABLES = [
'wind_speed',
'10m_wind_speed',
'divergence',
'vorticity',
'vertical_velocity',
'eddy_kinetic_energy',
'geostrophic_wind_speed',
'ageostrophic_wind_speed',
'lapse_rate',
'total_column_vapor',
'integrated_vapor_transport',
'relative_humidity',
'total_precipitation_6hr',
'total_precipitation_24hr',
]
INPUT_PATH = flags.DEFINE_string('input_path', None, help='Input Zarr path')
OUTPUT_PATH = flags.DEFINE_string('output_path', None, help='Output Zarr path')
DERIVED_VARIABLES = flags.DEFINE_list(
'derived_variables',
_DEFAULT_DERIVED_VARIABLES,
help=(
'Comma delimited list of derived variables to dynamically compute'
'during evaluation.'
),
)
PREEXISTING_VARIABLES_TO_REMOVE = flags.DEFINE_list(
'preexisting_variables_to_remove',
[],
help=(
'Comma delimited list of variables to remove from the source data, '
'if they exist. This is useful to allow for overriding source dataset '
'variables with dervied variables of the same name.'
),
)
RENAME_RAW_TP_NAME = flags.DEFINE_bool(
'rename_raw_tp_name', False, 'Rename raw tp name to "total_precipitation".'
)
RAW_TP_NAME = flags.DEFINE_string(
'raw_tp_name',
'total_precipitation',
help=(
'Raw name of total precipitation variables. Use'
' "total_precipitation_6hr" for backwards compatibility.'
),
)
RENAME_VARIABLES = flags.DEFINE_string(
'rename_variables',
None,
help=(
'Dictionary of variable to rename to standard names. E.g. {"2t":'
' "2m_temperature"}'
),
)
WORKING_CHUNKS = flag_utils.DEFINE_chunks(
'working_chunks',
'',
help=(
'chunk sizes overriding input chunks to use for computing aggregations'
' e.g., "longitude=10,latitude=10". No need to add'
' prediction_timedelta=-1'
),
)
RECHUNK_ITEMSIZE = flags.DEFINE_integer(
'rechunk_itemsize',
4,
help='Itemsize for rechunking.',
)
MAX_MEM_GB = flags.DEFINE_integer(
'max_mem_gb', 1, help='Max memory for rechunking in GB.'
)
NUM_THREADS = flags.DEFINE_integer(
'num_threads',
None,
help='Number of chunks to read/write in parallel per worker.',
)
RUNNER = flags.DEFINE_string('runner', None, 'beam.runners.Runner')
def _add_derived_variables(
dataset: xr.Dataset, derived_variables: dict[str, dvs.DerivedVariable]
) -> xr.Dataset:
return dataset.assign(
{k: dv.compute(dataset) for k, dv in derived_variables.items()}
)
def _strip_offsets(
key: xbeam.Key, dataset: xr.Dataset
) -> tuple[xbeam.Key, xr.Dataset]:
"""Remove offsets without corresponding coordinate in dataset."""
key = key.with_offsets(
**{k: v if k in dataset.coords else None for k, v in key.offsets.items()}
)
return key, dataset
def main(argv: list[str]) -> None:
derived_variables = {
variable_name: dvs.DERIVED_VARIABLE_DICT[variable_name]
for variable_name in DERIVED_VARIABLES.value
}
source_dataset, source_chunks = xbeam.open_zarr(INPUT_PATH.value)
# Validate and clean-up the source datset.
if RENAME_RAW_TP_NAME.value:
source_dataset = source_dataset.rename(
{RAW_TP_NAME.value: 'total_precipitation'}
)
rename_variables = (
ast.literal_eval(RENAME_VARIABLES.value)
if RENAME_VARIABLES.value
else None
)
if rename_variables:
source_dataset = source_dataset.rename(rename_variables)
source_chunks = {
rename_variables.get(k, k): v for k, v in source_chunks.items()
}
for var_name in PREEXISTING_VARIABLES_TO_REMOVE.value:
if var_name in source_dataset:
del source_dataset[var_name]
for var_name, dv in derived_variables.items():
if var_name in source_dataset:
raise ValueError(
f'cannot compute {var_name!r} because it already exists in the source'
' dataset. Consider including it in '
'--preexisting_variables_to_remove.'
)
if not set(dv.base_variables) <= source_dataset.keys():
raise ValueError(
f'cannot compute {var_name!r} because its base variables '
f'{dv.base_variables} are not found in the source dataset:\n'
f'{source_dataset}'
)
# Add derived variables to template
template = source_dataset.copy(deep=False)
derived_variables_with_rechunking = {}
derived_variables_without_rechunking = {}
for name, dv in derived_variables.items():
dropped_dims = dv.all_input_core_dims - set(dv.core_dims[1])
variable = template[dv.base_variables[0]].isel(
{k: 0 for k in dropped_dims}, drop=True
)
template[name] = variable
template[name].attrs = {} # Strip attributes
if 'prediction_timedelta' in dv.all_input_core_dims:
derived_variables_with_rechunking[name] = dv
else:
derived_variables_without_rechunking[name] = dv
template = xbeam.make_template(template)
working_chunks = dict(source_chunks) # No rechunking
working_chunks.update(WORKING_CHUNKS.value)
if 'prediction_timedelta' in source_chunks:
working_chunks.update({'prediction_timedelta': -1})
# Define helper functions for branching
rechunk_variables = []
for dv in derived_variables_with_rechunking.values():
rechunk_variables.extend(dv.base_variables)
def _is_precip(kv: tuple[xbeam.Key, xr.Dataset]) -> bool:
key, _ = kv
assert len(key.vars) == 1, key
(var,) = key.vars
return var in rechunk_variables
def _is_not_precip(kv: tuple[xbeam.Key, xr.Dataset]) -> bool:
key, _ = kv
assert len(key.vars) == 1, key
(var,) = key.vars
return var not in rechunk_variables
with beam.Pipeline(runner=RUNNER.value, argv=argv) as root:
# Initial branch for computation without rechunking
# TODO(srasp): Further optimize by splitting branches earlier
# so that with and without rechunking can be computed in parallel
pcoll = (
root
| xbeam.DatasetToChunks(
source_dataset,
source_chunks,
split_vars=False,
num_threads=NUM_THREADS.value,
)
| beam.MapTuple(
lambda k, v: ( # pylint: disable=g-long-lambda
k,
_add_derived_variables(v, derived_variables_without_rechunking),
)
)
| xbeam.SplitVariables()
| beam.MapTuple(_strip_offsets)
)
if derived_variables_with_rechunking:
# Rechunking branch: Only variables that require rechunking in lead time,
# i.e. precipitation, will be rechunked. Others go straight to
# ChunksToZarr.
pcoll_rechunk = (
pcoll
| beam.Filter(_is_precip)
| 'RechunkIn'
>> xbeam.Rechunk( # pytype: disable=wrong-arg-types
source_dataset.sizes,
source_chunks,
working_chunks,
itemsize=RECHUNK_ITEMSIZE.value,
max_mem=2**30 * MAX_MEM_GB.value,
)
| beam.MapTuple(
lambda k, v: ( # pylint: disable=g-long-lambda
k,
_add_derived_variables(v, derived_variables_with_rechunking),
)
)
| 'RechunkOut'
>> xbeam.Rechunk( # pytype: disable=wrong-arg-types
source_dataset.sizes,
working_chunks,
source_chunks,
itemsize=RECHUNK_ITEMSIZE.value,
max_mem=2**30 * MAX_MEM_GB.value,
)
)
# Bypass branch for non-rechunk variables
pcoll_no_rechunk = pcoll | beam.Filter(_is_not_precip)
pcoll = (pcoll_no_rechunk, pcoll_rechunk) | beam.Flatten()
# Combined
_ = pcoll | xbeam.ChunksToZarr(
OUTPUT_PATH.value,
template,
source_chunks,
num_threads=NUM_THREADS.value,
)
if __name__ == '__main__':
app.run(main)