-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathslice_dataset.py
192 lines (164 loc) · 5.62 KB
/
slice_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""CLI to slice a Zarr file containing a xarray.Dataset.
Example Usage:
```
export BUCKET=my-bucket
export PROJECT=my-project
export REGION=us-central1
python scripts/resample_in_time.py \
--input_path=gs://weatherbench2/datasets/era5/1959-2022-6h-64x32_equiangular_with_poles_conservative.zarr \
--output_path=gs://$BUCKET/datasets/era5/$USER/2020-2021-weekly-average-temperature.zarr \
--runner=DataflowRunner \
--sel="prediction_timedelta_stop=15 days,latitude_start=-33.33,latitude_stop=33.33" \
--isel="longitude_start=0,longitude_stop=180,longitude_step=40" \
--keep_variables=geopotential,temperature \
-- \
--project=$PROJECT \
--temp_location=gs://$BUCKET/tmp/ \
--setup_file=./setup.py \
--requirements_file=./scripts/dataflow-requirements.txt \
--job_name=slice-dataset-$USER
```
"""
from collections import abc
import re
from absl import app
from absl import flags
import apache_beam as beam
from weatherbench2 import flag_utils
import xarray_beam as xbeam
# Command line arguments
INPUT_PATH = flags.DEFINE_string('input_path', None, help='Input Zarr path.')
OUTPUT_PATH = flags.DEFINE_string('output_path', None, help='Output Zarr path.')
SEL = flag_utils.DEFINE_dim_value_pairs(
'sel',
'',
help=(
'Selection criteria, to pass to xarray.Dataset.sel. Passed as key=value'
' pairs, with key = VARNAME_{start,stop,step}'
),
)
ISEL = flag_utils.DEFINE_dim_integer_pairs(
'isel',
'',
help=(
'Selection criteria, to pass to xarray.Dataset.isel. Passed as'
' key=value pairs, with key = VARNAME_{start,stop,step}'
),
)
DROP_VARIABLES = flags.DEFINE_list(
'drop_variables',
None,
help=(
'Comma delimited list of variables to drop. If empty, drop no'
' variables.'
),
)
KEEP_VARIABLES = flags.DEFINE_list(
'keep_variables',
None,
help=(
'Comma delimited list of variables to keep. If empty, use'
' --drop_variables to determine which variables to keep'
),
)
OUTPUT_CHUNKS = flag_utils.DEFINE_chunks(
'output_chunks', '', help='Chunk sizes overriding input chunks.'
)
RUNNER = flags.DEFINE_string(
'runner', None, help='Beam runner. Use DirectRunner for local execution.'
)
NUM_THREADS = flags.DEFINE_integer(
'num_threads',
None,
help='Number of chunks to read/write in parallel per worker.',
)
def _get_selections(
isel_flag_value: dict[str, int],
sel_flag_value: dict[str, flag_utils.DimValueType],
) -> tuple[dict[str, slice], dict[str, slice]]:
"""Gets dictionaries for `xr.isel` and `xr.sel`."""
isel_parts = {}
sel_parts = {}
for parts_dict, flag_value in [
(isel_parts, isel_flag_value),
(sel_parts, sel_flag_value),
]:
for k, v in flag_value.items():
match = re.search(r'^(.*)_(start|stop|step)$', k)
if not match:
raise ValueError(f'Flag {k} did not end in _(start|stop|step)')
dim, placement = match.groups()
if dim not in parts_dict:
parts_dict[dim] = [None, None, None]
if placement == 'start':
parts_dict[dim][0] = v
elif placement == 'stop':
parts_dict[dim][1] = v
else:
parts_dict[dim][2] = v
overlap = set(isel_parts).intersection(sel_parts)
if overlap:
raise ValueError(
f'--isel {isel_flag_value} and --sel {sel_flag_value} overlapped for'
f' variables {overlap}'
)
isel = {k: slice(*v) for k, v in isel_parts.items()}
sel = {k: slice(*v) for k, v in sel_parts.items()}
return isel, sel
def main(argv: abc.Sequence[str]) -> None:
ds, input_chunks = xbeam.open_zarr(INPUT_PATH.value)
if DROP_VARIABLES.value:
ds = ds[[v for v in ds if v not in DROP_VARIABLES.value]]
elif KEEP_VARIABLES.value:
ds = ds[KEEP_VARIABLES.value]
isel, sel = _get_selections(ISEL.value, SEL.value)
if isel:
ds = ds.isel(isel)
if sel:
ds = ds.sel(sel)
template = xbeam.make_template(ds)
output_chunks = {k: v for k, v in input_chunks.items()} # Copy
for k in output_chunks:
if k in OUTPUT_CHUNKS.value:
output_chunks[k] = OUTPUT_CHUNKS.value[k]
else:
output_chunks[k] = min(output_chunks[k], ds.sizes[k])
itemsize = max(var.dtype.itemsize for var in template.values())
with beam.Pipeline(runner=RUNNER.value, argv=argv) as root:
# Read, rechunk, write
unused_pcoll = (
root
| xbeam.DatasetToChunks(
ds, input_chunks, split_vars=True, num_threads=NUM_THREADS.value
)
| xbeam.Rechunk( # pytype: disable=wrong-arg-types
ds.sizes,
input_chunks,
output_chunks,
itemsize=itemsize,
)
| xbeam.ChunksToZarr(
OUTPUT_PATH.value,
template=template,
zarr_chunks=output_chunks,
num_threads=NUM_THREADS.value,
)
)
if __name__ == '__main__':
flags.mark_flags_as_required(['input_path', 'output_path'])
flags.mark_flags_as_mutual_exclusive(['keep_variables', 'drop_variables'])
app.run(main)