|
| 1 | +#include "gmock/gmock.h" // from @googletest |
| 2 | +#include "gtest/gtest.h" // from @googletest |
| 3 | +#include "lib/Utils/Polynomial/ChebyshevDecomposition.h" |
| 4 | +#include "llvm/include/llvm/ADT/APFloat.h" // from @llvm-project |
| 5 | +#include "llvm/include/llvm/ADT/SmallVector.h" // from @llvm-project |
| 6 | + |
| 7 | +namespace mlir { |
| 8 | +namespace heir { |
| 9 | +namespace polynomial { |
| 10 | +namespace { |
| 11 | + |
| 12 | +using ::llvm::APFloat; |
| 13 | +using ::llvm::SmallVector; |
| 14 | +using ::testing::ElementsAre; |
| 15 | + |
| 16 | +TEST(ChebyshevDecompositionTest, EmptyPolynomial) { |
| 17 | + ChebyshevBasisPolynomial p; |
| 18 | + ChebyshevDecomposition decomposition = decompose(p, 1); |
| 19 | + EXPECT_EQ(decomposition.generatorDegree, 1); |
| 20 | + EXPECT_TRUE(decomposition.coeffs.empty()); |
| 21 | +} |
| 22 | + |
| 23 | +TEST(ChebyshevDecompositionTest, ConstantPolynomial) { |
| 24 | + ChebyshevBasisPolynomial p = {APFloat(5.0)}; |
| 25 | + ChebyshevDecomposition decomposition = decompose(p, 1); |
| 26 | + ASSERT_EQ(decomposition.coeffs.size(), 1); |
| 27 | + EXPECT_THAT(decomposition.coeffs[0], ElementsAre(APFloat(5.0))); |
| 28 | +} |
| 29 | + |
| 30 | +TEST(ChebyshevDecompositionTest, LinearPolynomialK1) { |
| 31 | + ChebyshevBasisPolynomial p = {APFloat(-1.0), APFloat(-3.0)}; |
| 32 | + ChebyshevDecomposition decomposition = decompose(p, 1); |
| 33 | + ASSERT_EQ(decomposition.coeffs.size(), 2); |
| 34 | + EXPECT_THAT(decomposition.coeffs[0], ElementsAre(APFloat(-1.0))); |
| 35 | + EXPECT_THAT(decomposition.coeffs[1], ElementsAre(APFloat(-3.0))); |
| 36 | +} |
| 37 | + |
| 38 | +TEST(ChebyshevDecompositionTest, LinearPolynomialK3) { |
| 39 | + ChebyshevBasisPolynomial p = {APFloat(-1.0), APFloat(-3.0)}; |
| 40 | + ChebyshevDecomposition decomposition = decompose(p, 3); |
| 41 | + EXPECT_EQ(decomposition.generatorDegree, 3); |
| 42 | + ASSERT_EQ(decomposition.coeffs.size(), 1); |
| 43 | + EXPECT_THAT(decomposition.coeffs[0], |
| 44 | + ElementsAre(APFloat(-1.0), APFloat(-3.0))); |
| 45 | +} |
| 46 | + |
| 47 | +TEST(ChebyshevDecompositionTest, QuadraticPolynomial) { |
| 48 | + ChebyshevBasisPolynomial p = {APFloat(1.0), APFloat(-2.0), APFloat(3.0)}; |
| 49 | + ChebyshevDecomposition decomposition = decompose(p, 2); |
| 50 | + ASSERT_EQ(decomposition.coeffs.size(), 2); |
| 51 | + EXPECT_THAT(decomposition.coeffs[0], |
| 52 | + ElementsAre(APFloat(1.0), APFloat(-2.0))); |
| 53 | + EXPECT_THAT(decomposition.coeffs[1], ElementsAre(APFloat(3.0))); |
| 54 | +} |
| 55 | + |
| 56 | +// The expected output was found with the reference Python implementation and it |
| 57 | +// was verified independently by evaluating the polynomials on one of the |
| 58 | +// points. |
| 59 | +TEST(ChebyshevDecompositionTest, Degree7Polynomial) { |
| 60 | + ChebyshevBasisPolynomial p = {APFloat(1.0), APFloat(-2.0), APFloat(3.0), |
| 61 | + APFloat(4.0), APFloat(5.0), APFloat(6.0), |
| 62 | + APFloat(-7.0), APFloat(8.0)}; |
| 63 | + ChebyshevDecomposition decomposition = decompose(p, 3); |
| 64 | + EXPECT_EQ(decomposition.generatorDegree, 3); |
| 65 | + ASSERT_EQ(decomposition.coeffs.size(), 3); |
| 66 | + EXPECT_THAT(decomposition.coeffs[0], |
| 67 | + ElementsAre(APFloat(8.0), APFloat(-16.0), APFloat(-2.0))); |
| 68 | + EXPECT_THAT(decomposition.coeffs[1], |
| 69 | + ElementsAre(APFloat(4.0), APFloat(10.0), APFloat(-4.0))); |
| 70 | + EXPECT_THAT(decomposition.coeffs[2], |
| 71 | + ElementsAre(APFloat(-14.0), APFloat(32.0))); |
| 72 | +} |
| 73 | + |
| 74 | +TEST(ChebyshevDecompositionTest, Degree20Polynomial) { |
| 75 | + ChebyshevBasisPolynomial p = {APFloat(-1.0), APFloat(2.0), APFloat(3.0), |
| 76 | + APFloat(4.0), APFloat(5.0), APFloat(-6.0), |
| 77 | + APFloat(7.0), APFloat(-8.0), APFloat(9.0), |
| 78 | + APFloat(10.0), APFloat(11.0), APFloat(12.0), |
| 79 | + APFloat(-13.0), APFloat(14.0), APFloat(15.0), |
| 80 | + APFloat(-16.0), APFloat(17.0), APFloat(18.0), |
| 81 | + APFloat(19.0), APFloat(20.0), APFloat(21.0)}; |
| 82 | + ChebyshevDecomposition decomposition = decompose(p, 4); |
| 83 | + EXPECT_EQ(decomposition.generatorDegree, 4); |
| 84 | + ASSERT_EQ(decomposition.coeffs.size(), 6); |
| 85 | + EXPECT_THAT( |
| 86 | + decomposition.coeffs[0], |
| 87 | + ElementsAre(APFloat(7.0), APFloat(2.0), APFloat(19.0), APFloat(32.0))); |
| 88 | + EXPECT_THAT(decomposition.coeffs[1], |
| 89 | + ElementsAre(APFloat(149.0), APFloat(-12.0), APFloat(8.0), |
| 90 | + APFloat(100.0))); |
| 91 | + EXPECT_THAT(decomposition.coeffs[2], |
| 92 | + ElementsAre(APFloat(-118.0), APFloat(-112.0), APFloat(-244.0), |
| 93 | + APFloat(-248.0))); |
| 94 | + EXPECT_THAT(decomposition.coeffs[3], |
| 95 | + ElementsAre(APFloat(-472.0), APFloat(-48.0), APFloat(-32.0), |
| 96 | + APFloat(-272.0))); |
| 97 | + EXPECT_THAT(decomposition.coeffs[4], |
| 98 | + ElementsAre(APFloat(136.0), APFloat(288.0), APFloat(304.0), |
| 99 | + APFloat(320.0))); |
| 100 | + EXPECT_THAT(decomposition.coeffs[5], ElementsAre(APFloat(336.0))); |
| 101 | +} |
| 102 | + |
| 103 | +} // namespace |
| 104 | +} // namespace polynomial |
| 105 | +} // namespace heir |
| 106 | +} // namespace mlir |
0 commit comments