This SDK allows you to seamlessly integrate the functionalities of Toolbox into your LangChain LLM applications, enabling advanced orchestration and interaction with GenAI models.
- Installation
- Quickstart
- Usage
- Loading Tools
- Use with LangChain
- Use with LangGraph
- Manual usage
- Authenticating Tools
- Binding Parameter Values
- Asynchronous Usage
pip install toolbox-langchain
Here's a minimal example to get you started using LangGraph:
from toolbox_langchain import ToolboxClient
from langchain_google_vertexai import ChatVertexAI
from langgraph.prebuilt import create_react_agent
toolbox = ToolboxClient("http://127.0.0.1:5000")
tools = toolbox.load_toolset()
model = ChatVertexAI(model="gemini-1.5-pro-002")
agent = create_react_agent(model, tools)
prompt = "How's the weather today?"
for s in agent.stream({"messages": [("user", prompt)]}, stream_mode="values"):
message = s["messages"][-1]
if isinstance(message, tuple):
print(message)
else:
message.pretty_print()
Import and initialize the toolbox client.
from toolbox_langchain import ToolboxClient
# Replace with your Toolbox service's URL
toolbox = ToolboxClient("http://127.0.0.1:5000")
A toolset is a collection of related tools. You can load all tools in a toolset or a specific one:
# Load all tools
tools = toolbox.load_toolset()
# Load a specific toolset
tools = toolbox.load_toolset("my-toolset")
tool = toolbox.load_tool("my-tool")
Loading individual tools gives you finer-grained control over which tools are available to your LLM agent.
LangChain's agents can dynamically choose and execute tools based on the user input. Include tools loaded from the Toolbox SDK in the agent's toolkit:
from langchain_google_vertexai import ChatVertexAI
model = ChatVertexAI(model="gemini-1.5-pro-002")
# Initialize agent with tools
agent = model.bind_tools(tools)
# Run the agent
result = agent.invoke("Do something with the tools")
Integrate the Toolbox SDK with LangGraph to use Toolbox service tools within a graph-based workflow. Follow the official guide with minimal changes.
Represent each tool as a LangGraph node, encapsulating the tool's execution within the node's functionality:
from toolbox_langchain import ToolboxClient
from langgraph.graph import StateGraph, MessagesState
from langgraph.prebuilt import ToolNode
# Define the function that calls the model
def call_model(state: MessagesState):
messages = state['messages']
response = model.invoke(messages)
return {"messages": [response]} # Return a list to add to existing messages
model = ChatVertexAI(model="gemini-1.5-pro-002")
builder = StateGraph(MessagesState)
tool_node = ToolNode(tools)
builder.add_node("agent", call_model)
builder.add_node("tools", tool_node)
Connect tool nodes with LLM nodes. The LLM decides which tool to use based on input or context. Tool output can be fed back into the LLM:
from typing import Literal
from langgraph.graph import END, START
from langchain_core.messages import HumanMessage
# Define the function that determines whether to continue or not
def should_continue(state: MessagesState) -> Literal["tools", END]:
messages = state['messages']
last_message = messages[-1]
if last_message.tool_calls:
return "tools" # Route to "tools" node if LLM makes a tool call
return END # Otherwise, stop
builder.add_edge(START, "agent")
builder.add_conditional_edges("agent", should_continue)
builder.add_edge("tools", 'agent')
graph = builder.compile()
graph.invoke({"messages": [HumanMessage(content="Do something with the tools")]})
Execute a tool manually using the invoke
method:
result = tools[0].invoke({"name": "Alice", "age": 30})
This is useful for testing tools or when you need precise control over tool execution outside of an agent framework.
Warning
Always use HTTPS to connect your application with the Toolbox service, especially when using tools with authentication configured. Using HTTP exposes your application to serious security risks.
Some tools require user authentication to access sensitive data.
Toolbox currently supports authentication using the OIDC protocol with ID tokens (not access tokens) for Google OAuth 2.0.
Refer to these instructions on configuring tools for authenticated parameters.
You need a method to retrieve an ID token from your authentication service:
async def get_auth_token():
# ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
# This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" # Placeholder
toolbox = ToolboxClient("http://127.0.0.1:5000")
tools = toolbox.load_toolset()
auth_tool = tools[0].add_auth_token("my_auth", get_auth_token) # Single token
multi_auth_tool = tools[0].add_auth_tokens({"my_auth", get_auth_token}) # Multiple tokens
# OR
auth_tools = [tool.add_auth_token("my_auth", get_auth_token) for tool in tools]
auth_tool = toolbox.load_tool(auth_tokens={"my_auth": get_auth_token})
auth_tools = toolbox.load_toolset(auth_tokens={"my_auth": get_auth_token})
Note
Adding auth tokens during loading only affect the tools loaded within that call.
import asyncio
from toolbox_langchain import ToolboxClient
async def get_auth_token():
# ... Logic to retrieve ID token (e.g., from local storage, OAuth flow)
# This example just returns a placeholder. Replace with your actual token retrieval.
return "YOUR_ID_TOKEN" # Placeholder
toolbox = ToolboxClient("http://127.0.0.1:5000")
tool = toolbox.load_tool("my-tool")
auth_tool = tool.add_auth_token("my_auth", get_auth_token)
result = auth_tool.invoke({"input": "some input"})
print(result)
Predetermine values for tool parameters using the SDK. These values won't be modified by the LLM. This is useful for:
- Protecting sensitive information: API keys, secrets, etc.
- Enforcing consistency: Ensuring specific values for certain parameters.
- Pre-filling known data: Providing defaults or context.
toolbox = ToolboxClient("http://127.0.0.1:5000")
tools = toolbox.load_toolset()
bound_tool = tool[0].bind_param("param", "value") # Single param
multi_bound_tool = tools[0].bind_params({"param1": "value1", "param2": "value2"}) # Multiple params
# OR
bound_tools = [tool.bind_param("param", "value") for tool in tools]
bound_tool = toolbox.load_tool(bound_params={"param": "value"})
bound_tools = toolbox.load_toolset(bound_params={"param": "value"})
Note
Bound values during loading only affect the tools loaded in that call.
Use a function to bind dynamic values:
def get_dynamic_value():
# Logic to determine the value
return "dynamic_value"
dynamic_bound_tool = tool.bind_param("param", get_dynamic_value)
Important
You don't need to modify tool configurations to bind parameter values.
For better performance through cooperative
multitasking, you can
use the asynchronous interfaces of the ToolboxClient
.
Note
Asynchronous interfaces like aload_tool
and aload_toolset
require an
asynchronous environment. For guidance on running asynchronous Python
programs, see asyncio
documentation.
import asyncio
from toolbox_langchain import ToolboxClient
async def main():
toolbox = ToolboxClient("http://127.0.0.1:5000")
tool = await client.aload_tool("my-tool")
tools = await client.aload_toolset()
response = await tool.ainvoke()
if __name__ == "__main__":
asyncio.run(main())