forked from parsapoorsh/resnet-ixion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
214 lines (171 loc) · 6.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python3
import os
from pathlib import Path
import torch
import torch.nn as nn
from PIL import Image
from torch import optim
from torch.utils.data import DataLoader, Dataset
from torchvision import models, transforms
from tqdm import tqdm
# Hyperparameters and settings
num_epochs = 4
batch_size = 26
learning_rate = 0.001
train_folder = ["coco/train2017", "coco/test2017"]
val_folder = ["coco/val2017"]
allowed_extensions = (".png", ".jpg", ".jpeg", ".bmp", ".webp")
# DO NOT CHANGE, unless you know what you are doing
# wget https://download.pytorch.org/models/resnet152-f82ba261.pth
checkpoint_path = "resnet152-f82ba261.pth"
classes = [0, 90, 180, 270] # Four rotation classes: 0°, 90°, 180°, 270°
num_workers = os.cpu_count()
num_classes = len(classes)
epoches_done = 0
transform_train = transforms.Compose([
transforms.Resize((336, 336)),
transforms.RandomResizedCrop(224),
# transforms.Resize((224, 224)),
transforms.RandomAutocontrast(), # F.autocontrast,
# transforms.RandomEqualize(),
# v2.JPEG((50, 100)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transform_val = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def recursive_iterdir(path: Path):
path = Path(path)
for i in path.iterdir():
if i.is_dir():
yield from recursive_iterdir(i)
yield i
class RotatedDataset(Dataset):
def __init__(
self, folders: list[str], transform=None, limit: int = 0, offset: int = 0
):
self.folders = [folders] if isinstance(folders, str) else folders
self.transform = transform
self.limit = limit
self.offset = offset
self.image_paths = []
# recursive iterate through directories
for f in self.folders:
for i in recursive_iterdir(f):
# image.PnG -> .PnG -> .png
if not i.suffix.lower().endswith(allowed_extensions):
continue
self.image_paths.append(str(i))
def __len__(self):
total = len(self.image_paths) * num_classes
if self.limit:
total = self.limit
return total - self.offset
# the lst[0] returns the original image
# but the lst[1], lst[2], lst[3] returns rotations of the original image
# so in this way, each image would be x4'rd
def __getitem__(self, idx) -> tuple[torch.Tensor, int]:
idx = idx + self.offset
if idx >= len(self.image_paths) * num_classes:
raise IndexError
# the index of the original image in self.image_paths
index = idx // num_classes
# the index of the class.
# 0 = 0°, 1 = 90°, 2 = 180°, 3 = 270°
label = idx % num_classes
img_path = self.image_paths[index]
# noinspection PyBroadException
try:
image = Image.open(img_path).convert("RGB")
# some time some images are damaged, or not readable
# just return None, and they will be filtered by the collate_fn function
except Exception:
return None
# randomly horizontaly flip the image, like transforms.RandomHorizontalFlip, p = 0.5
if torch.rand(1).item() > 0.5:
image = image.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
method = [
None,
Image.Transpose.ROTATE_90,
Image.Transpose.ROTATE_180,
Image.Transpose.ROTATE_270,
][label]
if method is not None:
image = image.transpose(method)
if self.transform:
image = self.transform(image)
return image, label
train_dataset = RotatedDataset(train_folder, transform=transform_train)
val_dataset = RotatedDataset(val_folder, transform=transform_val)
# filter bad / damaged images
def collate_fn(batch):
batch = list(filter(lambda x: x is not None, batch))
return torch.utils.data.dataloader.default_collate(batch)
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
collate_fn=collate_fn,
)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
collate_fn=collate_fn,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
model = models.resnet152(weights=None)
# load pretrained weights (skipping the final fc layer)
state_dict = torch.load(checkpoint_path)
model_dict = model.state_dict()
pretrained_dict = {
k: v for k, v in state_dict.items() if k in model_dict and "fc" not in k
}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
# get the number of input features for the existing fc layer (model.fc.in_features)
# replace the final fully connected layer with a new one that outputs 4 classes
model.fc = nn.Linear(model.fc.in_features, num_classes)
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
for epoch in range(epoches_done + 1, num_epochs + 1):
print(f"Epoch [{epoch}/{num_epochs}] Starting...")
model.train()
running_loss = 0.0
for batch_idx, (images, labels) in enumerate(tqdm(train_loader)):
images: torch.Tensor = images.to(device)
labels: torch.Tensor = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * images.size(dim=0)
torch.save(model.state_dict(), f"resnet152_ixion_e{epoch}.pth")
epoch_loss = running_loss / len(train_dataset)
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {epoch_loss:.4f}")
# cleanup VRAM
torch.cuda.empty_cache()
# a full validation of the val_dataset
model.eval()
total, correct = 0, 0
with torch.no_grad():
for images, labels in tqdm(val_loader):
images: torch.Tensor = images.to(device)
labels: torch.Tensor = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs, 1)
total += labels.size(dim=0)
correct += (predicted == labels).sum().item()
val_acc = correct / total
print(
f"Epoch [{epoch + 1}/{num_epochs}], Validation Accuracy: {val_acc * 100:.4f}%"
)
epoches_done += 1