-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathbeta_ensemble_polynomial_potential.py
308 lines (232 loc) · 11.4 KB
/
beta_ensemble_polynomial_potential.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# coding: utf8
import numpy as np
from numpy.polynomial.chebyshev import poly2cheb # cf rescale_largest_eig_val
import scipy.linalg as la
import matplotlib.pyplot as plt
from dppy.beta_ensemble_polynomial_potential_core import (polynomial_in_negative_log_conditional_a_coef as P_a_cond,
polynomial_in_negative_log_conditional_b_coef as P_b_cond,
sampler_exact_convex_quartic,
sampler_mala,
equilibrium_x2m,
equilibrium_x2_x4,
equilibrium_ClItKr10,
check_random_state)
class BetaEnsemblePolynomialPotential(object):
"""docstring for BetaEnsemblePolynomialPotential"""
def __init__(self, beta, potential_V, name=None):
self.beta = beta
self.V = potential_V
if not (self.beta > 0):
raise ValueError('beta = {} <= 0'.format(beta))
if self.V.order > 7:
str_ = ['Polynomial potentials V are allowed up to degree 6',
'Given\n',
' '.join(['g_{}={}'.format(n, g_n)
for n, g_n in enumerate(self.V.coef[::-1])])]
raise ValueError(' '.join(str_))
if self.V[5]:
raise ValueError('Potentials V = ... + g_5 x^5 + ... not supported, given g_5={}'.format(self.V[5]))
if self.V.order % 2:
raise ValueError('V has odd degree deg(V)={}'.format(self.V.order))
if self.V[self.V.order] < 0:
raise ValueError('V = g_{} x^{} + ... with g_{} < 0'.format(*[self.V.order] * 3))
if self.V[0] != 0:
print('Weird thing to introduce a constant V = ... + g_0={}. Reset g_0 = 0'.format(self.V[0]))
self.V[0] = 0
self._V_ClItKr10 = np.poly1d([1 / 20, -4 / 15, 1 / 5, 8 / 5, 0])
self.equilibrium_density, self.support = self.__compute_equilibrium()
# Sampling
self.N = None
self.nb_gibbs_passes = None
def __str__(self):
return '\n'.join(['beta={}'.format(self.beta),
'V(x) =\n{}'.format(self.V.__str__())])
def __compute_equilibrium(self):
""" Update attribute equilibrium_density and support if available
"""
equi_dens, supp = None, None
deg_V = self.V.order
deg_V_2, deg_V_odd = divmod(deg_V, 2)
set_non_zero_coefs = set(np.nonzero(self.V.coef[::-1])[0])
if not deg_V_odd:
if self.V == self._V_ClItKr10:
equi_dens, supp = equilibrium_ClItKr10()
elif set_non_zero_coefs == {deg_V}:
equi_dens, supp = equilibrium_x2m(deg_V_2,
deg_V * self.V[deg_V])
elif set_non_zero_coefs == {2, 4}:
equi_dens, supp = equilibrium_x2_x4(2 * self.V[2],
4 * self.V[4])
return equi_dens, supp
def sample_mcmc(self,
N=10,
nb_gibbs_passes=10,
sample_exact_cond=False,
nb_mala_steps=100,
return_chain_of_eig_vals=False,
return_chain_of_lambda_max=False,
random_state=None):
""" Gibbs sampler on Jacobi matrices to sample approximately from the corresponding :math:`\\beta`-ensemble.
:param N:
Number of points/size of the :math:`\\beta`-ensemble
:type N:
int
:param nb_gibbs_passes:
Number of passes/sweeps over the variables using the Gibbs sampler
:type nb_gibbs_passes:
int
:param sample_exact_cond:
Flag to force (``True``) exact sampling from the conditionals when it is possible.
Otherwise run MALA for ``nb_mala_steps` to sample from the conditionals.
:type sample_exact_cond:
bool (default 100)
:param nb_mala_steps:
Number of steps of Metropolis Ajusted Langevin Algorithm (MALA) to perform when the conditionals are sampled approximately
:type nb_mala_steps:
int, default 100
:param return_chain_of_eig_vals:
Flag to return the chain of eigenvalues associated to the chain of Jacobi matrices.
If ``True`` the whole chain of eigenvalues is returned
If ``False`` only the last sequence of eigenvalues is returned
:type return_chain_of_eig_vals:
bool (default False)
:param return_chain_of_lambda:
Flag to return the chain of the **largest** eigenvalues associated to the chain of Jacobi matrices.
If ``True`` the whole chain of the **largest** eigenvalues is returned
If ``False`` only the **largest** eigenvalue of the last Jacobi matrix is returned
:type return_chain_of_eig_vals:
bool (default False)
"""
rng = check_random_state(random_state)
if sample_exact_cond:
if self.V[3]:
raise ValueError('Sampling exactly the conditionals a_i |... from V = ... + x^3 + ... is not supported, given g_3={}. Conditionals are not log-concave, cannot use Dev12 sampler'.format(self.V[3]))
if self.V.order >= 5:
raise ValueError('Sampling exactly the conditionals a_i |... from V = ... + x^5 + ... is not supported, deg(V)={}>=5. Conditionals are not log-concave, cannot use Dev12 sampler'.format(self.V.order))
even_coefs_V = self.V.coef[::-1][2::2]
if not all(even_coefs_V >= 0):
raise ValueError('\n'.join(
['even coefs of V are not all >=0',
', '.join(['g_{}={}'.format(2 * (n + 1), g_2n)
for n, g_2n in enumerate(even_coefs_V)]),
'Conditionals are not log-concave, cannot use Dev12 sampler',
'You may retry swithching `sample_exact_cond` to False']))
self.N = N
self.nb_gibbs_passes = nb_gibbs_passes
a, b = np.zeros((2, N + 3))
if return_chain_of_eig_vals:
eig_vals = np.zeros((N, nb_gibbs_passes))
elif return_chain_of_lambda_max:
lambda_max = np.zeros(nb_gibbs_passes)
for p in range(nb_gibbs_passes):
if (p + 1) % 50 == 0:
print(p + 1)
for i in range(1, N + 1):
# a_i | ... propto exp - P_a_i
P_a_i = 0.5 * self.beta * N * P_a_cond(i, a, b, self.V)
if sample_exact_cond:
a[i], _ = sampler_exact_convex_quartic(
P=P_a_i,
random_state=rng)
else:
a[i] = sampler_mala(a[i],
V=P_a_i,
sigma=0.01,
nb_steps=nb_mala_steps,
random_state=rng)
# b_i | ... propto x^(shape-1) * exp - P_b_i
if i < N:
P_b_i = 0.5 * self.beta * N * P_b_cond(i, a, b, self.V)
b[i], _ = sampler_exact_convex_quartic(
P=P_b_i,
shape=0.5 * self.beta * (N - i),
random_state=rng)
if return_chain_of_eig_vals:
eig_vals[:, p] = la.eigvalsh_tridiagonal(a[1:N + 1],
np.sqrt(b[1:N]))
elif return_chain_of_lambda_max:
lambda_max[p] = la.eigvalsh_tridiagonal(
a[1:N + 1],
np.sqrt(b[1:N]),
select='i',
select_range=(N - 1, N - 1))[0]
if return_chain_of_eig_vals:
return eig_vals
if return_chain_of_lambda_max:
return lambda_max
return la.eigvalsh_tridiagonal(a[1:N + 1], np.sqrt(b[1:N]))
def hist(self, sampl, save_file_name=False):
""" Display the histogram of a ``sampl`` from the corresponding :math:`\\beta`-ensemble and the corresponding equilibrium distribution when available
:param sampl:
One or multiple samples from the corresponding :math:`\\beta`-ensemble.
**In any case ``sampl`` is flattened** as if the samples were concatenated
:type sampl:
array_like
:param save_file_name:
File name, e.g. ``figure.pdf``, to save the plot
:type save_file_name:
str
.. seealso::
:py:func:`__compute_equilibrium`
"""
fig, ax = plt.subplots(1, 1)
# Title
# V_x = ' '.join(['V(x) =',
# ' + '.join([r'$g_{} x^{}$'.format(n, n)
# for n, g_n in enumerate(self.V.coef[::-1],
# start=0)
# if g_n])])
# with_coefs = ', '.join([r'$g_{}={:0.2f}$'.format(n, g_n)
# for n, g_n in enumerate(self.V.coef[::-1])
# if g_n])
# beta_N_passes = r'$\beta={}, N={}$ #Gibbs_passes={}'.format(
# self.beta, self.N, self.nb_gibbs_passes)
# plt.title('\n'.join([V_x, with_coefs, beta_N_passes]))
# histogram
ax.hist(np.ravel(sampl),
density=True,
histtype='step',
lw=3,
bins=30,
label='histogram')
if self.equilibrium_density is not None and self.support is not None:
# equilibrium_measure
x = np.linspace(1.1 * self.support[0],
1.1 * self.support[1],
300)
ax.plot(x, self.equilibrium_density(x),
label=r'$\mu_{eq}$', lw=3, c='k')
# start, end = ax.get_xlim()
# ax.xaxis.set_ticks(np.arange(-1.5, 2.1, 1.5))
ax.xaxis.set_ticks(np.arange(-2, 2.1, 1))
plt.legend(loc='best',
fontsize='x-large',
frameon=False,
handlelength=1)
ax.tick_params(axis='both', which='major', labelsize=15)
plt.tight_layout()
if save_file_name:
plt.savefig(save_file_name)
def rescale_largest_eig_val(self, lambda_max):
""" Rescale the largest eigenvalue to see Tracy-Widom fluctuations
.. math::
N^{\\frac{2}{3}} c_v (\\lambda_{\\max} - b_v)
where
.. math::
c_V = (b_v - a_v)^{-\\frac{1}{3}} \\left(\\sum_{n=1}^{\\infty} k {V'}_k \\right)^{\\frac{2}{3}}
with :math:`{V'}_k` being the Chebychev coefficients of
.. math::
V'(\\frac{a_v + b_v}{2} + \\frac{b_v - a_v}{2} X)
.. seealso::
- Section 3.2 https://arxiv.org/pdf/1210.2199.pdf
- :cite:`OlNaTr14` p.5 Equation 2.3 `https://arxiv.org/pdf/1404.0071.pdf <https://arxiv.org/pdf/1404.0071.pdf>`_
- `poly2cheb <https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.chebyshev.poly2cheb.html?>`_
"""
a_v, b_v = self.support
shift = np.poly1d([0.5 * (b_v - a_v), 0.5 * (b_v + a_v)])
dV_shift = self.V.deriv(m=1)(shift)
dV_shift_cheb = poly2cheb(dV_shift.coeffs[::-1])
sum_k_dV_k = sum(k * dV_k
for k, dV_k in enumerate(dV_shift_cheb[1:], start=1))
c_v = np.cbrt(sum_k_dV_k**2 / (b_v - a_v))
return self.N**(2 / 3) * c_v * (lambda_max - b_v)