-
Notifications
You must be signed in to change notification settings - Fork 100
/
config_dataset_HAR_6_classes.py
205 lines (164 loc) · 6.84 KB
/
config_dataset_HAR_6_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from lstm_architecture import one_hot, run_with_config
import numpy as np
import os
#--------------------------------------------
# Neural net's config.
#--------------------------------------------
class Config(object):
"""
define a class to store parameters,
the input should be feature mat of training and testing
"""
def __init__(self, X_train, X_test):
# Data shaping
self.train_count = len(X_train) # 7352 training series
self.test_data_count = len(X_test) # 2947 testing series
self.n_steps = len(X_train[0]) # 128 time_steps per series
self.n_classes = 6 # Final output classes
# Training
self.learning_rate = 0.001
self.lambda_loss_amount = 0.005
self.training_epochs = 250
self.batch_size = 100
self.clip_gradients = 15.0
self.gradient_noise_scale = None
# Dropout is added on inputs and after each stacked layers (but not
# between residual layers).
self.keep_prob_for_dropout = 0.85 # **(1/3.0)
# Linear+relu structure
self.bias_mean = 0.3
# I would recommend between 0.1 and 1.0 or to change and use a xavier
# initializer
self.weights_stddev = 0.2
########
# NOTE: I think that if any of the below parameters are changed,
# the best is to readjust every parameters in the "Training" section
# above to properly compare the architectures only once optimised.
########
# LSTM structure
# Features count is of 9: three 3D sensors features over time
self.n_inputs = len(X_train[0][0])
self.n_hidden = 28 # nb of neurons inside the neural network
# Use bidir in every LSTM cell, or not:
self.use_bidirectionnal_cells = False
# High-level deep architecture
self.also_add_dropout_between_stacked_cells = False # True
# NOTE: values of exactly 1 (int) for those 2 high-level parameters below totally disables them and result in only 1 starting LSTM.
# self.n_layers_in_highway = 1 # Number of residual connections to the LSTMs (highway-style), this is did for each stacked block (inside them).
# self.n_stacked_layers = 1 # Stack multiple blocks of residual
# layers.
#--------------------------------------------
# Dataset-specific constants and functions + loading
#--------------------------------------------
# Useful Constants
# Those are separate normalised input features for the neural network
INPUT_SIGNAL_TYPES = [
"body_acc_x_",
"body_acc_y_",
"body_acc_z_",
"body_gyro_x_",
"body_gyro_y_",
"body_gyro_z_",
"total_acc_x_",
"total_acc_y_",
"total_acc_z_"
]
# Output classes to learn how to classify
LABELS = [
"WALKING",
"WALKING_UPSTAIRS",
"WALKING_DOWNSTAIRS",
"SITTING",
"STANDING",
"LAYING"
]
DATA_PATH = "data/"
DATASET_PATH = DATA_PATH + "UCI HAR Dataset/"
TRAIN = "train/"
TEST = "test/"
# Load "X" (the neural network's training and testing inputs)
def load_X(X_signals_paths):
"""
Given attribute (train or test) of feature, read all 9 features into an
np ndarray of shape [sample_sequence_idx, time_step, feature_num]
argument: X_signals_paths str attribute of feature: 'train' or 'test'
return: np ndarray, tensor of features
"""
X_signals = []
for signal_type_path in X_signals_paths:
file = open(signal_type_path, 'rb')
# Read dataset from disk, dealing with text files' syntax
X_signals.append(
[np.array(serie, dtype=np.float32) for serie in [
row.replace(' ', ' ').strip().split(' ') for row in file
]]
)
file.close()
return np.transpose(np.array(X_signals), (1, 2, 0))
X_train_signals_paths = [
DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in INPUT_SIGNAL_TYPES
]
X_test_signals_paths = [
DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in INPUT_SIGNAL_TYPES
]
X_train = load_X(X_train_signals_paths)
X_test = load_X(X_test_signals_paths)
# Load "y" (the neural network's training and testing outputs)
def load_y(y_path):
"""
Read Y file of values to be predicted
argument: y_path str attibute of Y: 'train' or 'test'
return: Y ndarray / tensor of the 6 one_hot labels of each sample
"""
file = open(y_path, 'rb')
# Read dataset from disk, dealing with text file's syntax
y_ = np.array(
[elem for elem in [
row.replace(' ', ' ').strip().split(' ') for row in file
]],
dtype=np.int32
)
file.close()
# Substract 1 to each output class for friendly 0-based indexing
return one_hot(y_ - 1)
y_train_path = DATASET_PATH + TRAIN + "y_train.txt"
y_test_path = DATASET_PATH + TEST + "y_test.txt"
y_train = load_y(y_train_path)
y_test = load_y(y_test_path)
#--------------------------------------------
# Training (maybe multiple) experiment(s)
#--------------------------------------------
n_layers_in_highway = 0
n_stacked_layers = 3
trial_name = "{}x{}".format(n_layers_in_highway, n_stacked_layers)
for learning_rate in [0.001]: # [0.01, 0.007, 0.001, 0.0007, 0.0001]:
for lambda_loss_amount in [0.005]:
for clip_gradients in [15.0]:
print "learning_rate: {}".format(learning_rate)
print "lambda_loss_amount: {}".format(lambda_loss_amount)
print ""
class EditedConfig(Config):
def __init__(self, X, Y):
super(EditedConfig, self).__init__(X, Y)
# Edit only some parameters:
self.learning_rate = learning_rate
self.lambda_loss_amount = lambda_loss_amount
self.clip_gradients = clip_gradients
# Architecture params:
self.n_layers_in_highway = n_layers_in_highway
self.n_stacked_layers = n_stacked_layers
# # Useful catch upon looping (e.g.: not enough memory)
# try:
# accuracy_out, best_accuracy = run_with_config(EditedConfig)
# except:
# accuracy_out, best_accuracy = -1, -1
accuracy_out, best_accuracy, f1_score_out, best_f1_score = (
run_with_config(EditedConfig, X_train, y_train, X_test, y_test)
)
print (accuracy_out, best_accuracy, f1_score_out, best_f1_score)
with open('{}_result_HAR_6.txt'.format(trial_name), 'a') as f:
f.write(str(learning_rate) + ' \t' + str(lambda_loss_amount) + ' \t' + str(clip_gradients) + ' \t' + str(
accuracy_out) + ' \t' + str(best_accuracy) + ' \t' + str(f1_score_out) + ' \t' + str(best_f1_score) + '\n\n')
print "________________________________________________________"
print ""
print "Done."