-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython_antenna_simulation.py
268 lines (216 loc) · 8.6 KB
/
python_antenna_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import math
import matplotlib.pyplot as plt
import numpy as np
from math import cos, sin, sqrt, atan2, acos, pi, log10
import plotly
from plotly.offline import init_notebook_mode
import plotly.graph_objs as go
plotly.offline.init_notebook_mode(connected=True)
import scipy.integrate
# velocity of light constant
v = 3 * 10 ** 8
freq = 2.4e9
Er = 4.4
h = 1.6* 10 ** -3
v = 3 * 10 ** 8
def DesignPatch (Er, h, Freq):
Eo = 8.854185e-12
lambd = 3e8 / Freq
lambdag = lambd / sqrt(Er)
W = (3e8 / (2 * Freq)) * sqrt(2 / (Er + 1))
temp = 1 + 12*(h/W)
Ereff = ((Er + 1) / 2) + ((Er - 1) / 2) * temp ** -0.5
F1 = (Ereff + 0.3) * (W / h + 0.264)
F2 = (Ereff - 0.258) * (W / h + 0.8)
dL = h * 0.412 * (F1 / F2)
lambdag = lambd / sqrt(Ereff)
L = (lambdag / 2) - 2 * dL
print('Rectangular Microstrip Patch Design')
print("Frequency: " + str(Freq))
print("Dielec Const, Er : " + str(Er))
print("Patch Width, W: " + str(W) + "m")
print("Patch Length, L: " + str(L) + "m")
print("Patch Height, h: " + str(h) + "m")
return W, L
W, L = DesignPatch (Er, h, freq)
def S_i(a):
temp=scipy.integrate.quad(lambda x:sin(x)/x,0,a)
return temp[0]
def J0(s):
temp=scipy.integrate.quad(lambda x:cos(s*sin(x)),0,pi)
temp=(1/pi)*temp[0]
return temp
## Getting Conductance params
def getK0 (f):
lamda_0 = v/f
k0 = (2*pi)/lamda_0
return k0
def getG1 (W, f):
k0 = getK0 (f)
X = k0 * W
I1 = -2 + cos(X) + X*S_i(X) + sin(X)/X
G1 = I1 / ( 120 * pi**2 )
return G1
def getG12 (W, k0, L):
temp=scipy.integrate.quad(lambda x:(((sin(k0*W*cos(x)/2)/cos(x))**2)*J0(k0*L*sin(x))*sin(x)**3),0,pi)
G12=(1/(120*pi**2))*temp[0]
return G12
def getGs(f, W, L):
G1 = getG1(W, f)
k0 = getK0(f)
G12 = getG12(W, k0, L)
return G1, G12
G1, G12 = getGs(freq, W, L)
print ('G1 : ', G1)
print ('G12 : ', G12)
def inputImpedance (f, W, L, h, epsilon):
global v
k0 = getK0 (f)
G1, G12 = getGs(f, W, L)
Rin=1/(2*(G1+G12))
print ("Input Impedance:" , Rin , "ohms")
return Rin
Rin = inputImpedance(freq, W, L, h, Er)
def insetFeedPosition(Rin, L):
R=50.0
y0=(L/pi)*(math.acos(sqrt(R/Rin)))
return y0
print('Inset Feed Position : ', insetFeedPosition(Rin, L))
I1=1.863
I2=3.59801
def getDirectivity(G1, G12, W, f, I1, I2):
global v
lamda_0 = v/f
g_12=G12/G1
D_AF=2/(1+g_12)
D0=((2*pi*W)/lamda_0)**2*(1/I1)
D2=D0*D_AF
DIR_1 = 10*log10(D2)
I2=3.59801
D_2=((2*pi*W)/lamda_0)**2*(pi/I2)
DIR_2 = 10*log10(D_2)
return DIR_1, DIR_2
d1, d2 = getDirectivity(G1, G12, W, freq, I1 , I2)
print ('Directivity : ', d1, ' dB')
print ('Directivity : ', d2, ' dB')
def sph2cart1(r, th, phi):
x = r * cos(phi) * sin(th)
y = r * sin(phi) * sin(th)
z = r * cos(th)
return x, y, z
def cart2sph1(x, y, z):
r = sqrt(x**2 + y**2 + z**2) + 1e-15
th = acos(z / r)
phi = atan2(y, x)
return r, th, phi
def PatchFunction(thetaInDeg, phiInDeg, Freq, W, L, h, Er):
lamba = 3e8 / Freq
theta_in = math.radians(thetaInDeg)
phi_in = math.radians(phiInDeg)
ko = 2 * math.pi / lamba
xff, yff, zff = sph2cart1(999, theta_in, phi_in)
xffd = zff
yffd = xff
zffd = yff
r, thp, php = cart2sph1(xffd, yffd, zffd)
phi = php
theta = thp
if theta == 0:
theta = 1e-9
if phi == 0:
phi = 1e-9
Ereff = ((Er + 1) / 2) + ((Er - 1) / 2) * (1 + 12 * (h / W)) ** -0.5
F1 = (Ereff + 0.3) * (W / h + 0.264)
F2 = (Ereff - 0.258) * (W / h + 0.8)
dL = h * 0.412 * (F1 / F2)
Leff = L + 2 * dL
Weff = W
heff = h * sqrt(Er)
Numtr2 = sin(ko * heff * cos(phi) / 2)
Demtr2 = (ko * heff * cos(phi)) / 2
Fphi = (Numtr2 / Demtr2) * cos((ko * Leff / 2) * sin(phi))
Numtr1 = sin((ko * heff / 2) * sin(theta))
Demtr1 = ((ko * heff / 2) * sin(theta))
Numtr1a = sin((ko * Weff / 2) * cos(theta))
Demtr1a = ((ko * Weff / 2) * cos(theta))
Ftheta = ((Numtr1 * Numtr1a) / (Demtr1 * Demtr1a)) * sin(theta)
rolloff_factor = 0.5
theta_in_deg = theta_in * 180 / math.pi
F1 = 1 / (((rolloff_factor * (abs(theta_in_deg) - 90)) ** 2) + 0.001)
PatEdgeSF = 1 / (F1 + 1)
UNF = 1.0006
if theta_in <= math.pi / 2:
Etot = Ftheta * Fphi * PatEdgeSF * UNF
else:
Etot = 0
return Etot
def GetPatchFields(PhiStart, PhiStop, ThetaStart, ThetaStop, Freq, W, L, h, Er):
fields = np.ones((PhiStop, ThetaStop))
for phiDeg in range(PhiStart, PhiStop):
for thetaDeg in range(ThetaStart, ThetaStop):
eField = PatchFunction(thetaDeg, phiDeg, Freq, W, L, h, Er)
fields[phiDeg][thetaDeg] = eField
return fields
def PatchEHPlanePlot(Freq, W, L, h, Er, isLog=True):
fields = GetPatchFields(0, 360, 0, 90, Freq, W, L, h, Er)
Xtheta = np.linspace(0, 90, 90)
if isLog:
plt.plot(Xtheta, 20 * np.log10(abs(fields[90, :])), label="H-plane (Phi=90)")
plt.plot(Xtheta, 20 * np.log10(abs(fields[0, :])), label="E-plane (Phi=0)")
plt.ylabel('E-Field (dB)')
else:
plt.plot(Xtheta, fields[90, :], label="H-plane (Phi=90)")
plt.plot(Xtheta, fields[0, :], label="E-plane (Phi=0)")
plt.ylabel('E-Field')
plt.xlabel('Theta (degs)')
plt.title("EH Plane - Theta ")
plt.ylim(-40)
plt.xlim((0, 90))
start, end = plt.xlim()
plt.xticks(np.arange(start, end, 5))
plt.grid(b=True, which='major')
plt.legend()
plt.show()
return fields
fields = PatchEHPlanePlot(freq, W, L, h, Er)
def SurfacePlot(Fields, Freq, W, L, h, Er):
phiSize = Fields.shape[0]
thetaSize = Fields.shape[1]
X = np.ones((phiSize, thetaSize))
Y = np.ones((phiSize, thetaSize))
Z = np.ones((phiSize, thetaSize))
for phi in range(phiSize):
for theta in range(thetaSize):
e = Fields[phi][theta]
xe, ye, ze = sph2cart1(e, math.radians(theta), math.radians(phi))
X[phi, theta] = xe
Y[phi, theta] = ye
Z[phi, theta] = ze
surface = go.Surface(x=X, y=Y, z=Z)
data = [surface]
layout = go.Layout(
title='Surface Plot of EH Plane',
scene=dict(
xaxis=dict(
gridcolor='rgb(255, 255, 255)',
zerolinecolor='rgb(255, 255, 255)',
showbackground=True,
backgroundcolor='rgb(230, 230,230)'
),
yaxis=dict(
gridcolor='rgb(255, 255, 255)',
zerolinecolor='rgb(255, 255, 255)',
showbackground=True,
backgroundcolor='rgb(230, 230,230)'
),
zaxis=dict(
gridcolor='rgb(255, 255, 255)',
zerolinecolor='rgb(255, 255, 255)',
showbackground=True,
backgroundcolor='rgb(230, 230,230)'
)
)
)
fig = go.Figure(data=data, layout=layout)
plotly.offline.plot(fig)
SurfacePlot(fields, freq, W, L, h, Er)