-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathplot-eval-validate-cer.py
191 lines (158 loc) · 7.41 KB
/
plot-eval-validate-cer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# from https://github.com/Shreeshrii/tesstrain-sanPlusMinus
import re
import os
import argparse
import statistics
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
## from scipy.interpolate import UnivariateSpline
def parse_tesseract_log5(logfile):
re_iteration = re.compile(r'At iteration (\d+)/(\d+)/(\d+)')
re_bcer_train = re.compile(r'BCER train=([0-9.e+-]+)')
re_stage = re.compile(r'stage (\d+)')
re_bcer_eval = re.compile(
r'At iteration (\d+), stage (\d+), BCER eval=([0-9.e+-]+)')
find_subtrainer = 'Sub'
find_checkpoint = 'wrote best model'
iteration_line = ([], [], [])
checkpoint_line = ([], [], [])
subtrainer_line = ([], [], [])
eval_line = ([], [])
lines = []
with open(logfile, 'r', encoding='utf-8', errors='ignore') as f:
for ln in f:
if ln.startswith('At iteration') or ln.startswith('UpdateSubtrainer') or ln.startswith('Sub'):
lines.append('\n')
if len(ln) > 70:
lines.append(ln.rstrip('\r\n'))
else:
lines.append(ln)
text = ''.join(lines)
for ln in text.split('\n'):
stage = None
bcer_eval = None
match = re_bcer_eval.search(ln)
if match:
learning_iteration = int(match.group(1))
stage = int(match.group(2))
bcer_eval = float(match.group(3))
eval_line[0].append(bcer_eval)
eval_line[1].append(learning_iteration)
match = re_iteration.search(ln)
if match is None:
continue
learning_iteration = int(match.group(1))
training_iteration = int(match.group(2))
sample_iteration = int(match.group(3))
match = re_bcer_train.search(ln)
if match is None:
continue
bcer_train = float(match.group(1))
match = re_stage.search(ln)
if match:
stage = int(match.group(1))
subtrainer = (find_subtrainer in ln)
checkpoint = (find_checkpoint in ln)
if find_subtrainer in ln:
subtrainer_line[0].append(bcer_train)
subtrainer_line[1].append(learning_iteration)
subtrainer_line[2].append(training_iteration)
else:
iteration_line[0].append(bcer_train)
iteration_line[1].append(learning_iteration)
iteration_line[2].append(training_iteration)
if find_checkpoint in ln:
checkpoint_line[0].append(bcer_train)
checkpoint_line[1].append(learning_iteration)
checkpoint_line[2].append(training_iteration)
return iteration_line, checkpoint_line, subtrainer_line, eval_line
def plot(logfile, plotfile, model_name='model'):
maxticks = 10
(y, x, t), (c, cx, ct), (s, sx, st), (e, ex) = parse_tesseract_log5(logfile)
x = np.array(x)
y = np.array(y)
def annot_min(boxcolor, xpos, ypos, x, y, z):
if not z:
xmin = x[np.argmin(y)]
ymin = np.min(y)
boxtext= "{:.3f}% BCER at\n {:,} learning iterations" .format(ymin,xmin)
else:
tmin = z[np.argmin(y)]
xmin = x[np.argmin(y)]
ymin = np.min(y)
boxtext= "{:.3f}% BCER at\n {:,} learning iterations\n {:,} training iterations" .format(ymin,xmin,tmin)
ax1.annotate(boxtext, xy=(xmin, ymin), xytext=(xpos,ypos), textcoords='offset points', color='black', fontweight = 'bold',
arrowprops=dict(shrinkA=1, shrinkB=1, fc=boxcolor,alpha=0.7, ec='white', connectionstyle="arc3"),
bbox=dict(boxstyle='round,pad=0.2', fc=boxcolor, alpha=0.3))
PlotTitle="Tesseract LSTM Training - " + model_name
fig = plt.figure(figsize=(11,8.5)) #size is in inches
ax1 = fig.add_subplot()
ax1.yaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter())
ax1.yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter("%.1f"))
ax1.set_ylabel('BCER Character Error Rate %')
ax1.set_xlabel('Learning Iterations')
ax1.set_xticks(x)
ax1.tick_params(axis='x', labelsize='small')
ax1.locator_params(axis='x', nbins=maxticks) # limit ticks on x-axis
ax1.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter())
ax1.xaxis.set_major_formatter(matplotlib.ticker.StrMethodFormatter('{x:,.0f}'))
ax1.scatter(x, y, c='teal', alpha=0.7, s=0.5, label='BCER every 100 Training Iterations')
ax1.plot(x, y, 'teal', alpha=0.3, linewidth=0.5, label='Training BCER')
ax1.grid(True)
if s: # not NaN or empty
ax1.plot(sx, s, 'orange', linewidth=0.2, label='SubTrainer BCER')
ax1.scatter(sx, s, c='orange', s=0.5,
label='BCER for UpdateSubtrainer:Sub every 100 iterations', alpha=0.5)
annot_min('orange',-40,-40,sx,s,st)
if e: # not NaN or empty
ax1.plot(ex, e, 'magenta', linewidth=1.0)
ax1.scatter(ex, e, c='magenta', s=30,
label='BCER from evaluation during training', alpha=0.5)
annot_min('magenta',-50,50,ex,e,[])
if c: # not NaN or empty
# ax1.plot(ct, c, 'blue', linewidth=1.0)
ax1.scatter(cx, c, c='blue', s=15,
label='BCER at Checkpoints during training', alpha=0.5)
annot_min('blue',-100,-100,cx,c,ct)
tmax = t[np.argmax(x)]
ymax = y[np.argmax(x)]
xmax = np.max(x)
boxtext= "{:.3f}% BCER at\n {:,} learning iterations\n {:,} training iterations" .format(ymax,xmax,tmax)
ax1.annotate(boxtext, xy=(xmax, ymax), xytext=(5,-20), textcoords='offset points', color='black',
bbox=dict(boxstyle='round,pad=0.2', fc='teal', alpha=0.3))
plt.title(label=PlotTitle, fontsize = 14, fontweight = 'bold')
plt.legend(loc='upper right')
ymaxcer = max(1.5, min(100.5, np.quantile(y, 0.5) * 3))
ax1.set_ylim([-0.5, ymaxcer])
# Secondary x axis on top to display Training Iterations
ax2 = ax1.twiny() # ax1 and ax2 share y-axis
ax2.set_xlabel("Training Iterations")
ax2.set_xlim(ax1.get_xlim()) # ensure the independant x-axes now span the same range
ax2.set_xticks(x) # copy over the locations of the x-ticks from Learning Iterations
ax2.tick_params(axis='x', labelsize='small')
ax2.set_xticklabels(matplotlib.ticker.StrMethodFormatter('{x:,.0f}').format_ticks(t)) # But give value of Training Iterations
ax2.locator_params(axis='x', nbins=maxticks) # limit ticks to same as x-axis
ax2.xaxis.set_ticks_position('bottom') # set the position of ticks of the second x-axis to bottom
ax2.xaxis.set_label_position('bottom') # set the position of labels of the second x-axis to bottom
ax2.spines['bottom'].set_position(('outward', 36)) # positions the second x-axis below the first x-axis
plt.savefig(plotfile)
def main():
arg_parser = argparse.ArgumentParser(
'''Creates plot from Training and Evaluation Character Error Rates''')
arg_parser.add_argument(
'-m', '--model', nargs='?', metavar='MODEL_NAME', help='Model Name')
arg_parser.add_argument(
'logfile', help='Tesseract log file name')
arg_parser.add_argument(
'chartfile', help='Output chart file name (png)')
args = arg_parser.parse_args()
model_name = args.model or os.path.basename(os.path.dirname(
os.path.abspath(args.logfile)))
plotfile = args.chartfile or ('%s.png' % model_name)
plot(args.logfile, plotfile, model_name)
if __name__ == '__main__':
main()