|
1 |
| -### Exercises 4.2-1 |
2 |
| -*** |
3 |
| -Use a recursion tree to determine a good asymptotic upper bound on the recurrence |
| 1 | +### Exercises 4.2-1 |
| 2 | +*** |
| 3 | +Use a recursion tree to determine a good asymptotic upper bound on the recurrence |
4 | 4 |  = 3T\(\\lceil n/2 \\rceil\) + n). Use the substitution method to verify your answer.
|
5 | 5 |
|
6 |
| -### `Answer` |
7 |
| - |
8 |
| - |
9 |
| -树的高度是lgn,有3^lgn个叶子节点. |
10 |
| - |
11 |
| - = n\\sum_{i = 0}^{lg\(n\)-1}\(\\frac{3}{2}\)^i + \\Theta\(3^{\\lg{n}}\) \\\\ ~ |
12 |
| -\\hspace{15 mm} = \\Theta\(n^{\\lg{3}}\) + \\Theta\(3^{\\lg{n}}\) \\\\ ~ |
13 |
| -\\hspace{15 mm} = \\Theta\(n^{\\lg{3}}\) + \\Theta\(n^{\\lg{3}}\) \\\\ ~ |
14 |
| -\\hspace{15 mm} = \\Theta\(n^{\\lg{3}}\) |
15 |
| -) |
16 |
| - |
17 |
| -我们猜想  \\le cn^{\\lg{3}}+2n ) |
18 |
| - |
19 |
| - \\le 3c\(n/2\)^{\\lg{3}} + 2n \\\\ ~ |
20 |
| -\\hspace{15 mm} \\le cn^{\\lg{3}}+2n \\\\ ~ |
21 |
| -\\hspace{15 mm} = \\Theta\(n^{\\lg{3}}\) |
22 |
| -) |
23 |
| - |
24 |
| - |
25 |
| -### Exercises 4.2-2 |
26 |
| -*** |
27 |
| -Argue that the solution to the recurrence |
28 |
| - = T\(n/3\) + T\(2n/3\) + cn ) |
29 |
| -, where c is a constant, is Ω(nlgn) by appealing to the recurrsion tree. |
30 |
| - |
31 |
| -### `Answer` |
32 |
| -最短的叶子高度是lg3n,每一层都要cn.也就是说,只考虑最短叶子的那一层(忽略其他层)已经有cnlg3n. |
33 |
| - |
34 |
| - |
35 |
| -### Exercises 4.2-3 |
36 |
| -*** |
37 |
| -Draw the recursion tree for |
38 |
| - = 4T\(\\lfloor n/2 \\rfloor\) + cn) |
39 |
| -,where c is a constant, and provide a tight asymptotic bound on its solution. Verify your bound by the substitution method. |
40 |
| -### `Answer` |
41 |
| - |
42 |
| - |
43 |
| -很明显是n^2的级别 |
44 |
| - |
45 |
| -我们假设  \\le n^2+2cn) |
46 |
| - |
47 |
| - \\le 4c\(n/2\)^2 + 2cn/2+cn \\le cn^2+2cn) |
48 |
| - |
49 |
| -我们假设  \\ge n^2+2cn) |
50 |
| - |
51 |
| - \\ge 4c\(n/2\)^2 + 2cn/2+cn \\ge cn^2+2cn) |
52 |
| - |
53 |
| -### Exercises 4.2-4 |
54 |
| -*** |
55 |
| -Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(n - a) + T(a) + cn, where a ≥ 1 and c > 0 are constants. |
56 |
| - |
57 |
| -### `Answer` |
58 |
| - |
59 |
| -file:///Users/ganzhenchao/Workspaces/CLRS/C04-Recurrences/repo/s2/4.png |
60 |
| -  = \\sum_{i=0}^{n/a}c\(n-ia\) + \(n/a\)ca |
61 |
| -= \\Theta\(n^2\)) |
62 |
| - |
63 |
| -我们假设  \\le cn^2) |
64 |
| - |
65 |
| - \\le c\(n-a\)^2 + ca + cn \\\\ ~ |
66 |
| -\\hspace{15 mm} \\le cn^2-2acn+ca+cn \\\\ ~ |
67 |
| -\\hspace{15 mm} \\le cn^2-c\(2an-a-n\) \\\\ ~ |
68 |
| -\\hspace{15 mm}\\le cn^2 - cn ~~~~ if ~~ a > 1/2,n > 2a \\\\ ~ |
69 |
| -\\hspace{15 mm}\\le cn^2 \\\\ ~ |
70 |
| -\\hspace{15 mm} = \\Theta\(n^2\) |
71 |
| -) |
72 |
| - |
73 |
| -另外一个方向的证明和这个基本一样. |
74 |
| - |
75 |
| -### Exercises 4.2-5 |
76 |
| -*** |
77 |
| -Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(αn) +T((1 - α)n) + cn, where α is a constant in the range 0 <α < 1 and c > 0 is also a constant. |
78 |
| - |
79 |
| -### `Answer` |
80 |
| - |
81 |
| - |
82 |
| -可以假设α < 1/2,因此树的高度有 |
83 |
| - |
84 |
| - = \\sum_{i = 0}^{\\log_{1/ \\alpha}{n}}cn + \\Theta\(n\) = cn\\log_{1/ \\alpha}{n} + \\Theta\(n\) = \\Theta\(n\\lg{n}\) ) |
85 |
| - |
86 |
| -*** |
87 |
| -Follow [@louis1992](https://github.com/gzc) on github to help finish this task. |
88 |
| - |
| 6 | +### `Answer` |
| 7 | + |
| 8 | + |
| 9 | +树的高度是lgn,有3^lgn个叶子节点. |
| 10 | + |
| 11 | + = n\\sum_{i = 0}^{lg\(n\)-1}\(\\frac{3}{2}\)^i + \\Theta\(3^{\\lg{n}}\) \\\\ ~ |
| 12 | +\\hspace{15 mm} = \\Theta\(n^{\\lg{3}}\) + \\Theta\(3^{\\lg{n}}\) \\\\ ~ |
| 13 | +\\hspace{15 mm} = \\Theta\(n^{\\lg{3}}\) + \\Theta\(n^{\\lg{3}}\) \\\\ ~ |
| 14 | +\\hspace{15 mm} = \\Theta\(n^{\\lg{3}}\) |
| 15 | +) |
| 16 | + |
| 17 | +我们猜想  \\le cn^{\\lg{3}}+2n ) |
| 18 | + |
| 19 | + \\le 3c\(n/2\)^{\\lg{3}} + 2n \\\\ ~ |
| 20 | +\\hspace{15 mm} \\le cn^{\\lg{3}}+2n \\\\ ~ |
| 21 | +\\hspace{15 mm} = \\Theta\(n^{\\lg{3}}\) |
| 22 | +) |
| 23 | + |
| 24 | + |
| 25 | +### Exercises 4.2-2 |
| 26 | +*** |
| 27 | +Argue that the solution to the recurrence |
| 28 | + = T\(n/3\) + T\(2n/3\) + cn ) |
| 29 | +, where c is a constant, is Ω(nlgn) by appealing to the recurrsion tree. |
| 30 | + |
| 31 | +### `Answer` |
| 32 | +最短的叶子高度是lg3n,每一层都要cn.也就是说,只考虑最短叶子的那一层(忽略其他层)已经有cnlg3n. |
| 33 | + |
| 34 | + |
| 35 | +### Exercises 4.2-3 |
| 36 | +*** |
| 37 | +Draw the recursion tree for |
| 38 | + = 4T\(\\lfloor n/2 \\rfloor\) + cn) |
| 39 | +,where c is a constant, and provide a tight asymptotic bound on its solution. Verify your bound by the substitution method. |
| 40 | +### `Answer` |
| 41 | + |
| 42 | + |
| 43 | +很明显是n^2的级别 |
| 44 | + |
| 45 | +我们假设  \\le n^2+2cn) |
| 46 | + |
| 47 | + \\le 4c\(n/2\)^2 + 2cn/2+cn \\le cn^2+2cn) |
| 48 | + |
| 49 | +我们假设  \\ge n^2+2cn) |
| 50 | + |
| 51 | + \\ge 4c\(n/2\)^2 + 2cn/2+cn \\ge cn^2+2cn) |
| 52 | + |
| 53 | +### Exercises 4.2-4 |
| 54 | +*** |
| 55 | +Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(n - a) + T(a) + cn, where a ≥ 1 and c > 0 are constants. |
| 56 | + |
| 57 | +### `Answer` |
| 58 | + |
| 59 | +file:///Users/ganzhenchao/Workspaces/CLRS/C04-Recurrences/repo/s2/4.png |
| 60 | +  = \\sum_{i=0}^{n/a}c\(n-ia\) + \(n/a\)ca |
| 61 | += \\Theta\(n^2\)) |
| 62 | + |
| 63 | +我们假设  \\le cn^2) |
| 64 | + |
| 65 | + \\le c\(n-a\)^2 + ca + cn \\\\ ~ |
| 66 | +\\hspace{15 mm} \\le cn^2-2acn+ca+cn \\\\ ~ |
| 67 | +\\hspace{15 mm} \\le cn^2-c\(2an-a-n\) \\\\ ~ |
| 68 | +\\hspace{15 mm}\\le cn^2 - cn ~~~~ if ~~ a > 1/2,n > 2a \\\\ ~ |
| 69 | +\\hspace{15 mm}\\le cn^2 \\\\ ~ |
| 70 | +\\hspace{15 mm} = \\Theta\(n^2\) |
| 71 | +) |
| 72 | + |
| 73 | +另外一个方向的证明和这个基本一样. |
| 74 | + |
| 75 | +### Exercises 4.2-5 |
| 76 | +*** |
| 77 | +Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(αn) + |
| 78 | +T((1 - α)n) + cn, where α is a constant in the range 0 <α < 1 and c > 0 is also a constant. |
| 79 | + |
| 80 | +### `Answer` |
| 81 | + |
| 82 | + |
| 83 | +可以假设α < 1/2,因此树的高度有 |
| 84 | + |
| 85 | + = \\sum_{i = 0}^{\\log_{1/ \\alpha}{n}}cn + \\Theta\(n\) = cn\\log_{1/ \\alpha}{n} + \\Theta\(n\) = \\Theta\(n\\lg{n}\) ) |
| 86 | + |
| 87 | +*** |
| 88 | +Follow [@louis1992](https://github.com/gzc) on github to help finish this task. |
| 89 | + |
0 commit comments