-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrapezoidal.py
82 lines (56 loc) · 2.38 KB
/
Trapezoidal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
def trapezoidal_rule(f, a, b, n):
h = (b - a) / n
x = np.linspace(a, b, n + 1)
y = f(x)
result = h * (0.5 * y[0] + 0.5 * y[-1] + np.sum(y[1:-1]))
return result
def trapezoidal_rule_discrete(x, Fx):
if len(x) != len(Fx):
raise ValueError("Length of x and Fx must be equal.")
h = x[1] - x[0] # Assuming uniform spacing
print("""Formula:
∫ydx = h/2 (y0 + 2(y1 + y2 + ... + yn-1) + yn)""")
print(f"({h}/2)*({Fx[0]} + 2 x {sum(Fx[1:-1])} + {Fx[-1]})")
result = (h / 2) * (Fx[0] + 2 * sum(Fx[1:-1]) + Fx[-1])
rounded_result = round(result, 3)
print("∫ydx = ", rounded_result)
print(f"Solution by Trapezoidal Rule is {rounded_result}")
return rounded_result
def trapezoidal_rule_interactive():
print(""" ===== Trapezoidal Rule =====
Formula:
∫ydx = h/2 (y0 + 2(y1 + y2 + ... + yn-1) + yn)
Choose Any One
1. Find Numerical Integration for x and f(x)
2. Find Numerical Integration for f(x) = `Equation` and Step Value `h`""")
option = int(input("Choose Any One Option "))
if option == 1:
ValuesofXSt = input("Write Values of `x` (You can use , as a separator) \n")
ValuesofX = [float(x) for x in ValuesofXSt.split(",")]
ValuesofFxSt = input("Write Values of `f(x) or y` (You can use , as a separator) \n")
ValuesofFx = [float(x) for x in ValuesofFxSt.split(",")]
return trapezoidal_rule_discrete(ValuesofX, ValuesofFx)
elif option == 2:
ValueofFxSt = input("Enter Value of `f(x)`: ")
try:
ValueofFx = lambda x: eval(ValueofFxSt)
except SyntaxError:
print("Invalid function")
return None
Valueofa = float(input("Enter Value of `a`: "))
Valueofb = float(input("Enter Value of `b`: "))
if Valueofa >= Valueofb:
raise ValueError("Lower bound must be less than upper bound.")
Interval = int(input("Enter no of Interval `n`: "))
h = (Valueofb - Valueofa) / Interval
x = np.linspace(Valueofa, Valueofb, Interval + 1)
Fx = [round(ValueofFx(xi), 3) for xi in x]
print("Values of X is ", x.tolist())
print("Values of f(X) is ", Fx)
return trapezoidal_rule_discrete(x, Fx)
else:
print("Invalid option selected.")
return None
if __name__ == "__main__":
trapezoidal_rule_interactive()