-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fp32.py
255 lines (206 loc) · 10.8 KB
/
train_fp32.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
##########################################################################
# Import Library #
##########################################################################
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
from tensorboardX import SummaryWriter
import datetime
import time
import copy
import math
import torch.cuda.profiler as profiler
from apex import pyprof
pyprof.nvtx.init()
##########################################################################
# Global Variables #
##########################################################################
data_dir = './'
raw_dir = f'{data_dir}/raw'
raw_dogs_dir = f'{raw_dir}/dogs'
raw_cats_dir = f'{raw_dir}/cats'
train_dir = f'{data_dir}/train'
train_dogs_dir = f'{train_dir}/dogs'
train_cats_dir = f'{train_dir}/cats'
val_dir = f'{data_dir}/val'
val_dogs_dir = f'{val_dir}/dogs'
val_cats_dir = f'{val_dir}/cats'
log_dir = f'{data_dir}/log'
chk_dir = f'{data_dir}/checkpoint'
test_dir = f'{data_dir}/test'
##########################################################################
# GPU Initialization #
##########################################################################
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
##########################################################################
# Dataset Augmentation and Normalization #
##########################################################################
data_transforms = {
'train': transforms.Compose([
transforms.RandomRotation(5),
transforms.RandomHorizontalFlip(),
transforms.RandomResizedCrop(224, scale=(0.96, 1.0), ratio=(0.95, 1.05)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize([224,224]),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
##########################################################################
# Dataset Handler #
##########################################################################
###################### Change as needed ######################
batch_size = 1024
num_workers = 96
##############################################################
# Define the data transformation
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
# Define the data loader
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size,
shuffle=True, num_workers=num_workers)
for x in ['train', 'val']}
# Print the statistics
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
print(class_names)
print(f'Train image size: {dataset_sizes["train"]}')
print(f'Validation image size: {dataset_sizes["val"]}')
##########################################################################
# Download Pre-Trained Model #
##########################################################################
# Download the pre-trained model of ResNet-50
model_conv = torchvision.models.resnet50(pretrained=True)
# Define the checkpoint location to save the trained model
check_point = f'{chk_dir}/model-checkpoint-fp32.tar'
##########################################################################
# Define Training Components #
##########################################################################
# Parameters of newly constructed modules have requires_grad=True by default
for param in model_conv.parameters():
param.requires_grad = False
# We change the parameter of the final fully connected layer.
# We have to keep the number of input features to this layer.
# We change the output features from this layer into 2 features (i.e., we only have two classes).
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
# Copy the model into GPU memory
model_conv = model_conv.to(device)
# Choose the Criterion as Cross Entropy Loss
criterion = nn.CrossEntropyLoss()
# Optimize only the parameters of the final fully connected layer since we have changed them.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# This is our learning rate scheduler. Decay learning rate by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
##########################################################################
# Define Training Function #
##########################################################################
def train_model(model, criterion, optimizer, scheduler, num_epochs, timestamp):
since = time.time()
writer = SummaryWriter('log/'+timestamp+'-fp32')
# Initialization
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = math.inf
best_acc = 0.
with torch.autograd.profiler.emit_nvtx():
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for i, (inputs, labels) in enumerate(dataloaders[phase]):
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train' :
writer.add_scalar('Train/Current_Running_Loss', loss.item(), epoch*len(dataloaders[phase])+i)
writer.add_scalar('Train/Current_Running_Corrects', torch.sum(preds == labels.data), epoch*len(dataloaders[phase])+i)
writer.add_scalar('Train/Accum_Running_Loss', running_loss, epoch*len(dataloaders[phase])+i)
writer.add_scalar('Train/Accum_Running_Corrects', running_corrects, epoch*len(dataloaders[phase])+i)
else :
writer.add_scalar('Validation/Current_Running_Loss', loss.item(), epoch*len(dataloaders[phase])+i)
writer.add_scalar('Validation/Current_Running_Corrects', torch.sum(preds == labels.data), epoch*len(dataloaders[phase])+i)
writer.add_scalar('Validation/Running_Loss', epoch_loss, epoch*len(dataloaders[phase])+i)
writer.add_scalar('Validation/Running_Corrects', epoch_acc, epoch*len(dataloaders[phase])+i)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
if phase == 'train' :
writer.add_scalar('Train/Loss', epoch_loss, epoch)
writer.add_scalar('Train/Accuracy', epoch_acc, epoch)
else :
writer.add_scalar('Validation/Loss', epoch_loss, epoch)
writer.add_scalar('Validation/Accuracy', epoch_acc, epoch)
# deep copy the model
if phase == 'val' and epoch_loss < best_loss:
print(f'New best model found!')
print(f'New record loss: {epoch_loss}, previous record loss: {best_loss}')
best_loss = epoch_loss
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
writer.flush()
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:.4f} Best val loss: {:.4f}'.format(best_acc, best_loss))
# load best model weights
model.load_state_dict(best_model_wts)
writer.close()
return model, best_loss, best_acc
##########################################################################
# Training The Model #
##########################################################################
###################### Change as needed ######################
num_epochs = 3
##############################################################
today = datetime.datetime.today()
timestamp = today.strftime('%Y%m%d-%H%M%S')
# Start the training
profiler.start()
model_conv, best_val_loss, best_val_acc = train_model(model_conv,
criterion,
optimizer_conv,
exp_lr_scheduler,
num_epochs,
timestamp)
profiler.stop()
# Save the trained model for future use.
torch.save({'model_state_dict': model_conv.state_dict(),
'optimizer_state_dict': optimizer_conv.state_dict(),
'best_val_loss': best_val_loss,
'best_val_accuracy': best_val_acc,
'scheduler_state_dict' : exp_lr_scheduler.state_dict(),
}, check_point)