forked from enajx/NDP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_solution.py
49 lines (42 loc) · 2.22 KB
/
evaluate_solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
import yaml
from train_backend import fitness_functional
from utils import seed_python_numpy_torch_cuda, visualise_graph
if __name__ == "__main__":
# Load configuration file
import argparse
parser = argparse.ArgumentParser(description="id training")
parser.add_argument("--id", type=str, default="1701101416", metavar="", help="Run id, e.g. 1701100614")
parser.add_argument("--rollouts", type=int, default=1, metavar="", help="Number of evaluation rollouts")
parser.add_argument(
"--random_seed",
type=bool,
default=0,
metavar="",
help="If true, it uses a new seed different from training. This makes initial embeddings random at each evaluation if shared option was set to False.",
)
parser.add_argument("--generate_animations", type=bool, default=1, metavar="", help="Generate graph animations")
parser.add_argument("--layout", type=str, default="random_fixed", metavar="", help="Layout: random_fixed shell, spectral, spring, kamada_kawai, planar")
args = parser.parse_args()
path = "saved_models/" + args.id
with open(path + "/config.yml") as file:
config = yaml.load(file, Loader=yaml.Loader)
if args.random_seed:
print(f"\nUsing random seed for evaluation")
config["seed"] = None
seed_python_numpy_torch_cuda(config["seed"])
print("\nSeed: ", config["seed"])
print("Env seed: ", config["env_seed"])
solution_best = np.load(path + "/" + "solution_best.npy")
config["layout"] = args.layout
config["nb_episode_evals"] = 1
config["nb_growth_evals"] = args.rollouts
fitness = fitness_functional(config=config, render=True, solution_id="best")
fitness(solution_best)
if args.generate_animations:
print(f"\nGenerating growth visualisations")
visualise_graph(solution_best, config, "REVAL: Graph development — Best solution", env_rollout=False, logtocloud=False)
if "Network" not in config["environment"]:
print(f"\nGenerating rollout visualisations")
visualise_graph(solution_best, config, "REVAL: Information propagation during rollout — Best solution", env_rollout=True, logtocloud=False)
print(f"\nSumcheck best: {np.sum(solution_best)}")