Skip to content

Latest commit

 

History

History
94 lines (52 loc) · 3.7 KB

README.md

File metadata and controls

94 lines (52 loc) · 3.7 KB

Computing the number of Numerical Monoid of a Given Genus

This is a very optimized implementation of algorithm described in

Jean Fromentin and Florent Hivert. 2016. Exploring the tree of numerical semi- groups. Math. Comput. 85, 301 (2016), 2553–2568. DOI:https://doi.org/10.1090/mcom/3075

The more up to date code is in directory src/Cilk++/ together with a Sagemath binding.

Description of the problem

A numerical semigroup is a subset of the set of natural number which

  • contains 0
  • is stable under addition
  • has a finite complement

The elements of the complement are called gaps. The number of gaps is called the genus.

The goal is to compute the number n(g) of semigroups of a given genus.

A few conjectures:

  • Bras-amoros 2008 : n(g) >= n(g-1) + n(g-2). Still widely open.
  • Zhai 2013 n(g) >= n(g-1) asymptotically true, but open for small g.

See http://images.math.cnrs.fr/Semigroupes-numeriques-et-nombre-d-or-II.html (in French) for more explanation.

We also validated Wilf conjecture upto n=60 and invalidated some stronger statements (See Near-misses in Wilf's conjecture, Shalom Eliahou, Jean Fromentin https://arxiv.org/abs/1710.03623v1).

Results

Below is the table of the results (A more computer friendly syntax is at the end of https://github.com/hivert/NumericMonoid/raw/master/src/Sizes

g number of semigroups g number of semigroups g number of semigroups
0 1 25 467224 50 101090300128
1 1 26 770832 51 164253200784
2 2 27 1270267 52 266815155103
3 4 28 2091030 53 433317458741
4 7 29 3437839 54 703569992121
5 12 30 5646773 55 1142140736859
6 23 31 9266788 56 1853737832107
7 39 32 15195070 57 3008140981820
8 67 33 24896206 58 4880606790010
9 118 34 40761087 59 7917344087695
10 204 35 66687201 60 12841603251351
11 343 36 109032500 61 20825558002053
12 592 37 178158289 62 33768763536686
13 1001 38 290939807 63 54749244915730
14 1693 39 474851445 64 88754191073328
15 2857 40 774614284 65 143863484925550
16 4806 41 1262992840 66 233166577125714
17 8045 42 2058356522 67 377866907506273
18 13467 43 3353191846 68 612309308257800
19 22464 44 5460401576 69 992121118414851
20 37396 45 8888486816 70 1607394814170158
21 62194 46 14463633648
22 103246 47 23527845502
23 170963 48 38260496374
24 282828 49 62200036752