Skip to content

qwen3-vl-30b 是否已经支持训练? #9244

@jstacer1

Description

@jstacer1

Reminder

  • I have read the above rules and searched the existing issues.

System Info

ValueError: Processor was not found, please check and update your model file.
运行FAQ的代码输出如下:
from transformers import AutoProcessor
processor = AutoProcessor.from_pretrained("/root/autodl-tmp/Qwen3-VL-30B-A3B-Instruct")
print(type(processor))#<class 'transformers.models.qwen2.tokenization_qwen2_fast.Qwen2TokenizerFast'>
配置文件如下:

model

model_name_or_path: /root/autodl-tmp/Qwen3-VL-30B-A3B-Instruct
image_max_pixels: 262144
video_max_pixels: 16384
trust_remote_code: true

method

stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all

deepspeed: examples/deepspeed/ds_z3_config.json # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]

dataset

dataset: alpaca_en_demo # video: mllm_video_demo

template: qwen3_vl
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4

output

output_dir: saves/qwen3vl-30b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]

train

per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
resume_from_checkpoint: null

## eval

val_size: 0.1

per_device_eval_batch_size: 1

eval_strategy: steps

eval_steps: 500

Reproduction

(llamafc) root@autodl-container-a5d042a72c-eebc4213:~/LLaMA-Factory-main# llamafactory-cli train examples/train_lora/qwen3vl_lora_sft.yaml
[INFO|2025-10-09 16:42:45] llamafactory.hparams.parser:423 >> Process rank: 0, world size: 1, device: cuda:0, distributed training: False, compute dtype: torch.bfloat16
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:45,908 >> loading file vocab.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:45,908 >> loading file merges.txt
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:45,908 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:45,908 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:45,908 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:45,908 >> loading file tokenizer_config.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:45,908 >> loading file chat_template.jinja
[INFO|tokenization_utils_base.py:2337] 2025-10-09 16:42:46,110 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[INFO|image_processing_base.py:374] 2025-10-09 16:42:46,111 >> loading configuration file /root/autodl-tmp/Qwen3-VL-30B-A3B-Instruct/preprocessor_config.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:46,112 >> loading file vocab.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:46,112 >> loading file merges.txt
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:46,112 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:46,112 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:46,112 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:46,112 >> loading file tokenizer_config.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:42:46,112 >> loading file chat_template.jinja
[INFO|tokenization_utils_base.py:2337] 2025-10-09 16:42:46,305 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[INFO|2025-10-09 16:42:46] llamafactory.data.loader:143 >> Loading dataset /root/autodl-tmp/flowchart_understanding_real_train.json...
trust_remote_code is not supported anymore.
Please check that the Hugging Face dataset 'json' isn't based on a loading script and remove trust_remote_code.
If the dataset is based on a loading script, please ask the dataset author to remove it and convert it to a standard format like Parquet.
Converting format of dataset (num_proc=16): 100%|█████████████████████████████████████████████████████████████████| 1000/1000 [00:00<00:00, 2631.37 examples/s]
[INFO|2025-10-09 16:42:47] llamafactory.data.loader:143 >> Loading dataset /root/autodl-tmp/flowchart_understanding_syn.json...
trust_remote_code is not supported anymore.
Please check that the Hugging Face dataset 'json' isn't based on a loading script and remove trust_remote_code.
If the dataset is based on a loading script, please ask the dataset author to remove it and convert it to a standard format like Parquet.
Setting num_proc from 16 back to 1 for the train split to disable multiprocessing as it only contains one shard.
Generating train split: 17994 examples [00:00, 25567.76 examples/s]
Converting format of dataset (num_proc=16): 100%|█████████████████████████████████████████████████████████████████| 1000/1000 [00:00<00:00, 2915.50 examples/s]
Running tokenizer on dataset (num_proc=16): 0%| | 0/2000 [00:01<?, ? examples/s]
multiprocess.pool.RemoteTraceback:
"""
Traceback (most recent call last):
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/multiprocess/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 586, in _write_generator_to_queue
for i, result in enumerate(func(**kwargs)):
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3674, in _map_single
for i, batch in iter_outputs(shard_iterable):
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3624, in iter_outputs
yield i, apply_function(example, i, offset=offset)
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3547, in apply_function
processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)
File "/root/LLaMA-Factory-main/src/llamafactory/data/processor/supervised.py", line 99, in preprocess_dataset
input_ids, labels = self._encode_data_example(
File "/root/LLaMA-Factory-main/src/llamafactory/data/processor/supervised.py", line 43, in _encode_data_example
messages = self.template.mm_plugin.process_messages(prompt + response, images, videos, audios, self.processor)
File "/root/LLaMA-Factory-main/src/llamafactory/data/mm_plugin.py", line 1589, in process_messages
self._validate_input(processor, images, videos, audios)
File "/root/LLaMA-Factory-main/src/llamafactory/data/mm_plugin.py", line 176, in _validate_input
raise ValueError("Processor was not found, please check and update your model file.")
ValueError: Processor was not found, please check and update your model file.
"""

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "/root/miniconda3/envs/llamafc/bin/llamafactory-cli", line 7, in <module>
sys.exit(main())
File "/root/LLaMA-Factory-main/src/llamafactory/cli.py", line 24, in main
launcher.launch()
File "/root/LLaMA-Factory-main/src/llamafactory/launcher.py", line 152, in launch
run_exp()
File "/root/LLaMA-Factory-main/src/llamafactory/train/tuner.py", line 110, in run_exp
_training_function(config={"args": args, "callbacks": callbacks})
File "/root/LLaMA-Factory-main/src/llamafactory/train/tuner.py", line 72, in _training_function
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
File "/root/LLaMA-Factory-main/src/llamafactory/train/sft/workflow.py", line 51, in run_sft
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module)
File "/root/LLaMA-Factory-main/src/llamafactory/data/loader.py", line 315, in get_dataset
dataset = _get_preprocessed_dataset(
File "/root/LLaMA-Factory-main/src/llamafactory/data/loader.py", line 256, in _get_preprocessed_dataset
dataset = dataset.map(
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 560, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3309, in map
for rank, done, content in iflatmap_unordered(
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 626, in iflatmap_unordered
[async_result.get(timeout=0.05) for async_result in async_results]
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 626, in <listcomp>
[async_result.get(timeout=0.05) for async_result in async_results]
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/multiprocess/pool.py", line 774, in get
raise self._value
ValueError: Processor was not found, please check and update your model file.
(llamafc) root@autodl-container-a5d042a72c-eebc4213:~/LLaMA-Factory-main# llamafactory-cli train examples/train_lora/qwen3vl_lora_sft.yaml
[INFO|2025-10-09 16:50:55] llamafactory.hparams.parser:423 >> Process rank: 0, world size: 1, device: cuda:0, distributed training: False, compute dtype: torch.bfloat16
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:55,811 >> loading file vocab.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:55,812 >> loading file merges.txt
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:55,812 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:55,812 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:55,812 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:55,812 >> loading file tokenizer_config.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:55,812 >> loading file chat_template.jinja
[INFO|tokenization_utils_base.py:2337] 2025-10-09 16:50:56,033 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[INFO|image_processing_base.py:374] 2025-10-09 16:50:56,034 >> loading configuration file /root/autodl-tmp/Qwen3-VL-30B-A3B-Instruct/preprocessor_config.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:56,035 >> loading file vocab.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:56,035 >> loading file merges.txt
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:56,035 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:56,035 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:56,035 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:56,035 >> loading file tokenizer_config.json
[INFO|tokenization_utils_base.py:2066] 2025-10-09 16:50:56,035 >> loading file chat_template.jinja
[INFO|tokenization_utils_base.py:2337] 2025-10-09 16:50:56,234 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[INFO|2025-10-09 16:50:56] llamafactory.data.loader:143 >> Loading dataset /root/autodl-tmp/flowchart_understanding_real_train.json...
trust_remote_code is not supported anymore.
Please check that the Hugging Face dataset 'json' isn't based on a loading script and remove trust_remote_code.
If the dataset is based on a loading script, please ask the dataset author to remove it and convert it to a standard format like Parquet.
Converting format of dataset (num_proc=16): 2000 examples [00:00, 2465.02 examples/s]
[INFO|2025-10-09 16:50:57] llamafactory.data.loader:143 >> Loading dataset /root/autodl-tmp/flowchart_understanding_syn.json...
trust_remote_code is not supported anymore.
Please check that the Hugging Face dataset 'json' isn't based on a loading script and remove trust_remote_code.
If the dataset is based on a loading script, please ask the dataset author to remove it and convert it to a standard format like Parquet.
Converting format of dataset (num_proc=16): 2000 examples [00:00, 2628.88 examples/s]
Running tokenizer on dataset (num_proc=16): 0%| | 0/2000 [00:01<?, ? examples/s]
multiprocess.pool.RemoteTraceback:
"""
Traceback (most recent call last):
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/multiprocess/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 586, in _write_generator_to_queue
for i, result in enumerate(func(**kwargs)):
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3674, in _map_single
for i, batch in iter_outputs(shard_iterable):
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3624, in iter_outputs
yield i, apply_function(example, i, offset=offset)
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3547, in apply_function
processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)
File "/root/LLaMA-Factory-main/src/llamafactory/data/processor/supervised.py", line 99, in preprocess_dataset
input_ids, labels = self._encode_data_example(
File "/root/LLaMA-Factory-main/src/llamafactory/data/processor/supervised.py", line 43, in _encode_data_example
messages = self.template.mm_plugin.process_messages(prompt + response, images, videos, audios, self.processor)
File "/root/LLaMA-Factory-main/src/llamafactory/data/mm_plugin.py", line 1589, in process_messages
self._validate_input(processor, images, videos, audios)
File "/root/LLaMA-Factory-main/src/llamafactory/data/mm_plugin.py", line 176, in _validate_input
raise ValueError("Processor was not found, please check and update your model file.")
ValueError: Processor was not found, please check and update your model file.
"""

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "/root/miniconda3/envs/llamafc/bin/llamafactory-cli", line 7, in <module>
sys.exit(main())
File "/root/LLaMA-Factory-main/src/llamafactory/cli.py", line 24, in main
launcher.launch()
File "/root/LLaMA-Factory-main/src/llamafactory/launcher.py", line 152, in launch
run_exp()
File "/root/LLaMA-Factory-main/src/llamafactory/train/tuner.py", line 110, in run_exp
_training_function(config={"args": args, "callbacks": callbacks})
File "/root/LLaMA-Factory-main/src/llamafactory/train/tuner.py", line 72, in _training_function
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
File "/root/LLaMA-Factory-main/src/llamafactory/train/sft/workflow.py", line 51, in run_sft
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module)
File "/root/LLaMA-Factory-main/src/llamafactory/data/loader.py", line 315, in get_dataset
dataset = _get_preprocessed_dataset(
File "/root/LLaMA-Factory-main/src/llamafactory/data/loader.py", line 256, in _get_preprocessed_dataset
dataset = dataset.map(
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 560, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3309, in map
for rank, done, content in iflatmap_unordered(
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 626, in iflatmap_unordered
[async_result.get(timeout=0.05) for async_result in async_results]
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 626, in <listcomp>
[async_result.get(timeout=0.05) for async_result in async_results]
File "/root/miniconda3/envs/llamafc/lib/python3.10/site-packages/multiprocess/pool.py", line 774, in get
raise self._value
ValueError: Processor was not found, please check and update your model file

Others

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    solvedThis problem has been already solved

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions