|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +from ConfigParser import ConfigParser |
| 3 | +from collections import OrderedDict |
| 4 | +import logging |
| 5 | +import os |
| 6 | +import sys |
| 7 | + |
| 8 | +class CaffeLayerGenerator(object): |
| 9 | + def __init__(self, name, ltype): |
| 10 | + self.name = name |
| 11 | + self.bottom = [] |
| 12 | + self.top = [] |
| 13 | + self.type = ltype |
| 14 | + def get_template(self): |
| 15 | + return """ |
| 16 | +layer {{{{ |
| 17 | + name: "{}" |
| 18 | + type: "{}" |
| 19 | + bottom: "{}" |
| 20 | + top: "{}"{{}} |
| 21 | +}}}}""".format(self.name, self.type, self.bottom[0], self.top[0]) |
| 22 | + |
| 23 | +class CaffeInputLayer(CaffeLayerGenerator): |
| 24 | + def __init__(self, name, channels, width, height): |
| 25 | + super(CaffeInputLayer, self).__init__(name, 'Input') |
| 26 | + self.channels = channels |
| 27 | + self.width = width |
| 28 | + self.height = height |
| 29 | + def write(self, f): |
| 30 | + f.write(""" |
| 31 | +input: "{}" |
| 32 | +input_shape {{ |
| 33 | + dim: 1 |
| 34 | + dim: {} |
| 35 | + dim: {} |
| 36 | + dim: {} |
| 37 | +}}""".format(self.name, self.channels, self.width, self.height)) |
| 38 | + |
| 39 | +class CaffeConvolutionLayer(CaffeLayerGenerator): |
| 40 | + def __init__(self, name, filters, ksize=None, stride=None, pad=None, bias=True): |
| 41 | + super(CaffeConvolutionLayer, self).__init__(name, 'Convolution') |
| 42 | + self.filters = filters |
| 43 | + self.ksize = ksize |
| 44 | + self.stride = stride |
| 45 | + self.pad = pad |
| 46 | + self.bias = bias |
| 47 | + def write(self, f): |
| 48 | + opts = [''] |
| 49 | + if self.ksize is not None: opts.append('kernel_size: {}'.format(self.ksize)) |
| 50 | + if self.stride is not None: opts.append('stride: {}'.format(self.stride)) |
| 51 | + if self.pad is not None: opts.append('pad: {}'.format(self.pad)) |
| 52 | + if not self.bias: opts.append('bias_term: false') |
| 53 | + param_str = """ |
| 54 | + convolution_param {{ |
| 55 | + num_output: {}{} |
| 56 | + }}""".format(self.filters, '\n '.join(opts)) |
| 57 | + f.write(self.get_template().format(param_str)) |
| 58 | + |
| 59 | +class CaffePoolingLayer(CaffeLayerGenerator): |
| 60 | + def __init__(self, name, pooltype, ksize=None, stride=None, pad=None, global_pooling=None): |
| 61 | + super(CaffePoolingLayer, self).__init__(name, 'Pooling') |
| 62 | + self.pooltype = pooltype |
| 63 | + self.ksize = ksize |
| 64 | + self.stride = stride |
| 65 | + self.pad = pad |
| 66 | + self.global_pooling = global_pooling |
| 67 | + def write(self, f): |
| 68 | + opts = [''] |
| 69 | + if self.ksize is not None: opts.append('kernel_size: {}'.format(self.ksize)) |
| 70 | + if self.stride is not None: opts.append('stride: {}'.format(self.stride)) |
| 71 | + if self.pad is not None: opts.append('pad: {}'.format(self.pad)) |
| 72 | + if self.global_pooling is not None: opts.append('global_pooling: {}'.format('True' if self.global_pooling else 'False')) |
| 73 | + param_str = """ |
| 74 | + pooling_param {{ |
| 75 | + pool: {}{} |
| 76 | + }}""".format(self.pooltype, '\n '.join(opts)) |
| 77 | + f.write(self.get_template().format(param_str)) |
| 78 | + |
| 79 | +class CaffeInnerProductLayer(CaffeLayerGenerator): |
| 80 | + def __init__(self, name, num_output): |
| 81 | + super(CaffeInnerProductLayer, self).__init__(name, 'InnerProduct') |
| 82 | + self.num_output = num_output |
| 83 | + def write(self, f): |
| 84 | + param_str = """ |
| 85 | + inner_product_param {{ |
| 86 | + num_output: {} |
| 87 | + }}""".format(self.num_output) |
| 88 | + f.write(self.get_template().format(param_str)) |
| 89 | + |
| 90 | +class CaffeBatchNormLayer(CaffeLayerGenerator): |
| 91 | + def __init__(self, name): |
| 92 | + super(CaffeBatchNormLayer, self).__init__(name, 'BatchNorm') |
| 93 | + def write(self, f): |
| 94 | + param_str = """ |
| 95 | + batch_norm_param { |
| 96 | + use_global_stats: true |
| 97 | + }""" |
| 98 | + f.write(self.get_template().format(param_str)) |
| 99 | + |
| 100 | +class CaffeScaleLayer(CaffeLayerGenerator): |
| 101 | + def __init__(self, name): |
| 102 | + super(CaffeScaleLayer, self).__init__(name, 'Scale') |
| 103 | + def write(self, f): |
| 104 | + param_str = """ |
| 105 | + scale_param { |
| 106 | + bias_term: true |
| 107 | + }""" |
| 108 | + f.write(self.get_template().format(param_str)) |
| 109 | + |
| 110 | +class CaffeReluLayer(CaffeLayerGenerator): |
| 111 | + def __init__(self, name, negslope=None): |
| 112 | + super(CaffeReluLayer, self).__init__(name, 'Relu') |
| 113 | + self.negslope = negslope |
| 114 | + def write(self, f): |
| 115 | + param_str = "" |
| 116 | + if self.negslope is not None: |
| 117 | + param_str = """ |
| 118 | + relu_param {{ |
| 119 | + negative_slope: {} |
| 120 | + }}""".format(self.negslope) |
| 121 | + f.write(self.get_template().format(param_str)) |
| 122 | + |
| 123 | +class CaffeDropoutLayer(CaffeLayerGenerator): |
| 124 | + def __init__(self, name, prob): |
| 125 | + super(CaffeDropoutLayer, self).__init__(name, 'Dropout') |
| 126 | + self.prob = prob |
| 127 | + def write(self, f): |
| 128 | + param_str = """ |
| 129 | + dropout_param {{ |
| 130 | + dropout_ratio: {} |
| 131 | + }}""".format(self.prob) |
| 132 | + f.write(self.get_template().format(param_str)) |
| 133 | + |
| 134 | +class CaffeSoftmaxLayer(CaffeLayerGenerator): |
| 135 | + def __init__(self, name): |
| 136 | + super(CaffeSoftmaxLayer, self).__init__(name, 'Softmax') |
| 137 | + def write(self, f): |
| 138 | + f.write(self.get_template().format("")) |
| 139 | + |
| 140 | +class CaffeProtoGenerator: |
| 141 | + def __init__(self, name): |
| 142 | + self.name = name |
| 143 | + self.sections = [] |
| 144 | + self.lnum = 0 |
| 145 | + self.layer = None |
| 146 | + def add_layer(self, l): |
| 147 | + self.sections.append( l ) |
| 148 | + def add_input_layer(self, items): |
| 149 | + self.lnum = 0 |
| 150 | + lname = "data" |
| 151 | + self.layer = CaffeInputLayer(lname, items['channels'], items['width'], items['height']) |
| 152 | + self.layer.top.append( lname ) |
| 153 | + self.add_layer( self.layer ) |
| 154 | + def add_convolution_layer(self, items): |
| 155 | + self.lnum += 1 |
| 156 | + prev_blob = self.layer.top[0] |
| 157 | + lname = "conv"+str(self.lnum) |
| 158 | + filters = items['filters'] |
| 159 | + ksize = items['size'] if 'size' in items else None |
| 160 | + stride = items['stride'] if 'stride' in items else None |
| 161 | + pad = items['pad'] if 'pad' in items else None |
| 162 | + bias = not bool(items['batch_normalize']) if 'batch_normalize' in items else True |
| 163 | + self.layer = CaffeConvolutionLayer( lname, filters, ksize=ksize, stride=stride, pad=pad, bias=bias ) |
| 164 | + self.layer.bottom.append( prev_blob ) |
| 165 | + self.layer.top.append( lname ) |
| 166 | + self.add_layer( self.layer ) |
| 167 | + def add_innerproduct_layer(self, items): |
| 168 | + self.lnum += 1 |
| 169 | + prev_blob = self.layer.top[0] |
| 170 | + lname = "fc"+str(self.lnum) |
| 171 | + num_output = items['output'] |
| 172 | + self.layer = CaffeInnerProductLayer( lname, num_output ) |
| 173 | + self.layer.bottom.append( prev_blob ) |
| 174 | + self.layer.top.append( lname ) |
| 175 | + self.add_layer( self.layer ) |
| 176 | + def add_pooling_layer(self, ltype, items, global_pooling=None): |
| 177 | + prev_blob = self.layer.top[0] |
| 178 | + lname = "pool"+str(self.lnum) |
| 179 | + ksize = items['size'] if 'size' in items else None |
| 180 | + stride = items['stride'] if 'stride' in items else None |
| 181 | + pad = items['pad'] if 'pad' in items else None |
| 182 | + self.layer = CaffePoolingLayer( lname, ltype, ksize=ksize, stride=stride, pad=pad, global_pooling=global_pooling ) |
| 183 | + self.layer.bottom.append( prev_blob ) |
| 184 | + self.layer.top.append( lname ) |
| 185 | + self.add_layer( self.layer ) |
| 186 | + def add_batchnorm_layer(self, items): |
| 187 | + prev_blob = self.layer.top[0] |
| 188 | + lname = "bn"+str(self.lnum) |
| 189 | + self.layer = CaffeBatchNormLayer( lname ) |
| 190 | + self.layer.bottom.append( prev_blob ) |
| 191 | + self.layer.top.append( lname ) |
| 192 | + self.add_layer( self.layer ) |
| 193 | + def add_scale_layer(self, items): |
| 194 | + prev_blob = self.layer.top[0] |
| 195 | + lname = "scale"+str(self.lnum) |
| 196 | + self.layer = CaffeScaleLayer( lname ) |
| 197 | + self.layer.bottom.append( prev_blob ) |
| 198 | + self.layer.top.append( lname ) |
| 199 | + self.add_layer( self.layer ) |
| 200 | + def add_relu_layer(self, items): |
| 201 | + prev_blob = self.layer.top[0] |
| 202 | + lname = "relu"+str(self.lnum) |
| 203 | + self.layer = CaffeReluLayer( lname ) |
| 204 | + self.layer.bottom.append( prev_blob ) |
| 205 | + self.layer.top.append( prev_blob ) # loopback |
| 206 | + self.add_layer( self.layer ) |
| 207 | + def add_dropout_layer(self, items): |
| 208 | + prev_blob = self.layer.top[0] |
| 209 | + lname = "drop"+str(self.lnum) |
| 210 | + self.layer = CaffeDropoutLayer( lname, items['probability'] ) |
| 211 | + self.layer.bottom.append( prev_blob ) |
| 212 | + self.layer.top.append( prev_blob ) # loopback |
| 213 | + self.add_layer( self.layer ) |
| 214 | + def add_softmax_layer(self, items): |
| 215 | + prev_blob = self.layer.top[0] |
| 216 | + lname = "prob" |
| 217 | + self.layer = CaffeSoftmaxLayer( lname ) |
| 218 | + self.layer.bottom.append( prev_blob ) |
| 219 | + self.layer.top.append( lname ) |
| 220 | + self.add_layer( self.layer ) |
| 221 | + def finalize(self, name): |
| 222 | + self.layer.top[0] = name # replace |
| 223 | + def write(self, fname): |
| 224 | + with open(fname, 'w') as f: |
| 225 | + f.write('name: "{}"'.format(self.name)) |
| 226 | + for sec in self.sections: |
| 227 | + sec.write(f) |
| 228 | + logging.info('{} is generated'.format(fname)) |
| 229 | + |
| 230 | +###################################################################33 |
| 231 | +class uniqdict(OrderedDict): |
| 232 | + _unique = 0 |
| 233 | + def __setitem__(self, key, val): |
| 234 | + if isinstance(val, OrderedDict): |
| 235 | + self._unique += 1 |
| 236 | + key += "_"+str(self._unique) |
| 237 | + OrderedDict.__setitem__(self, key, val) |
| 238 | + |
| 239 | +def convert(cfgfile, ptxtfile): |
| 240 | + # |
| 241 | + parser = ConfigParser(dict_type=uniqdict) |
| 242 | + parser.read(cfgfile) |
| 243 | + netname = os.path.basename(cfgfile).split('.')[0] |
| 244 | + #print netname |
| 245 | + gen = CaffeProtoGenerator(netname) |
| 246 | + for section in parser.sections(): |
| 247 | + _section = section.split('_')[0] |
| 248 | + if _section in ["crop", "cost"]: |
| 249 | + continue |
| 250 | + # |
| 251 | + batchnorm_followed = False |
| 252 | + relu_followed = False |
| 253 | + items = dict(parser.items(section)) |
| 254 | + if 'batch_normalize' in items and items['batch_normalize']: |
| 255 | + batchnorm_followed = True |
| 256 | + if 'activation' in items and items['activation'] != 'linear': |
| 257 | + relu_followed = True |
| 258 | + # |
| 259 | + if _section == 'net': |
| 260 | + gen.add_input_layer(items) |
| 261 | + elif _section == 'convolutional': |
| 262 | + gen.add_convolution_layer(items) |
| 263 | + if batchnorm_followed: |
| 264 | + gen.add_batchnorm_layer(items) |
| 265 | + gen.add_scale_layer(items) |
| 266 | + if relu_followed: |
| 267 | + gen.add_relu_layer(items) |
| 268 | + elif _section == 'connected': |
| 269 | + gen.add_innerproduct_layer(items) |
| 270 | + if relu_followed: |
| 271 | + gen.add_relu_layer(items) |
| 272 | + elif _section == 'maxpool': |
| 273 | + gen.add_pooling_layer('MAX', items) |
| 274 | + elif _section == 'avgpool': |
| 275 | + gen.add_pooling_layer('AVE', items, global_pooling=True) |
| 276 | + elif _section == 'dropout': |
| 277 | + gen.add_dropout_layer(items) |
| 278 | + elif _section == 'softmax': |
| 279 | + gen.add_softmax_layer(items) |
| 280 | + else: |
| 281 | + logging.error("{} layer is not supported".format(_section)) |
| 282 | + #gen.finalize('result') |
| 283 | + gen.write(ptxtfile) |
| 284 | + |
| 285 | +def main(): |
| 286 | + parser = argparse.ArgumentParser(description='Convert YOLO cfg to Caffe prototxt') |
| 287 | + parser.add_argument('cfg', type=str, help='YOLO cfg') |
| 288 | + parser.add_argument('prototxt', type=str, help='Caffe prototxt') |
| 289 | + args = parser.parse_args() |
| 290 | + |
| 291 | + convert(args.cfg, args.prototxt) |
| 292 | + |
| 293 | +if __name__ == "__main__": |
| 294 | + main() |
| 295 | + |
| 296 | +# vim:sw=4:ts=4:et |
0 commit comments