You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The bug has not been fixed in the latest main branch
I have checked the latest main branch
Do you feel comfortable sharing a concise (minimal) script that reproduces the error? :)
Yes, I will share a minimal reproducible script.
🐛 Describe the bug
[rank104]: Traceback (most recent call last):
[rank104]: File "lora_finetune.py", line 481, in
[rank104]: train(args)
[rank104]: File "lora_finetune.py", line 308, in train
[rank104]: outputs = booster.execute_pipeline(
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/booster/booster.py", line 221, in execute_pipeline
[rank104]: return self.plugin.execute_pipeline(data_iter, model, criterion, optimizer, return_loss, return_outputs)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/booster/plugin/hybrid_parallel_plugin.py", line 1409, in execute_pipeline
[rank104]: outputs = self.scheduler.forward_backward_step(
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/pipeline/schedule/one_f_one_b.py", line 472, in forward_backward_step
[rank104]: result = self.run_forward_backward(model, data_iter, criterion, optimizer, return_loss, return_outputs)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/pipeline/schedule/one_f_one_b.py", line 416, in run_forward_backward
[rank104]: input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/pipeline/schedule/one_f_one_b.py", line 314, in backward_step
[rank104]: optimizer.backward_by_grad(tensors_to_backward[0], grads_to_backward[0])
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/booster/plugin/hybrid_parallel_plugin.py", line 832, in backward_by_grad
[rank104]: super().backward_by_grad(tensor, grad, inputs=inputs, retain_graph=retain_graph)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/zero/low_level/low_level_optim.py", line 479, in backward_by_grad
[rank104]: torch.autograd.backward(
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/init.py", line 289, in backward
[rank104]: _engine_run_backward(
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/graph.py", line 768, in _engine_run_backward
[rank104]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/function.py", line 306, in apply
[rank104]: return user_fn(self, *args)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/utils/checkpoint.py", line 296, in backward
[rank104]: outputs = ctx.run_function(*detached_inputs)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank104]: return self._call_impl(*args, **kwargs)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank104]: return forward_call(*args, **kwargs)
[rank104]: File "/root/.cache/huggingface/modules/transformers_modules/modeling_deepseek.py", line 1228, in forward
[rank104]: hidden_states = self.mlp(hidden_states)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank104]: return self._call_impl(*args, **kwargs)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank104]: return forward_call(*args, **kwargs)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/shardformer/modeling/deepseek_v3.py", line 81, in forward
[rank104]: y = self.moe_forward(hidden_states, topk_idx, topk_weight).view(*orig_shape)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/shardformer/modeling/deepseek_v3.py", line 100, in moe_forward
[rank104]: gathered_tokens, _ = all_to_all_uneven(sorted_tokens, input_split_sizes, output_splits, self.ep_group)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/moe/_operation.py", line 452, in all_to_all_uneven
[rank104]: return AllToAllUneven.apply(inputs, input_split_sizes, output_split_sizes, group, overlap, fp8_communication)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/function.py", line 574, in apply
[rank104]: return super().apply(*args, **kwargs) # type: ignore[misc]
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/moe/_operation.py", line 428, in forward
[rank104]: return _all_to_all(
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/moe/_operation.py", line 395, in _all_to_all
[rank104]: outputs = torch.empty(outputs_shape, dtype=inputs.dtype, device=inputs.device)
[rank104]: RuntimeError: Trying to create tensor with negative dimension -2058873370790320781: [-2058873370790320781, 7168]
EP16,PP3
此外偶发:
[rank106]: Traceback (most recent call last):
[rank106]: File "lora_finetune.py", line 481, in
[rank106]: train(args)
[rank106]: File "lora_finetune.py", line 308, in train
[rank106]: outputs = booster.execute_pipeline(
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/booster/booster.py", line 221, in execute_pipeline
[rank106]: return self.plugin.execute_pipeline(data_iter, model, criterion, optimizer, return_loss, return_outputs)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/booster/plugin/hybrid_parallel_plugin.py", line 1409, in execute_pipeline
[rank106]: outputs = self.scheduler.forward_backward_step(
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/pipeline/schedule/one_f_one_b.py", line 472, in forward_backward_step
[rank106]: result = self.run_forward_backward(model, data_iter, criterion, optimizer, return_loss, return_outputs)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/pipeline/schedule/one_f_one_b.py", line 416, in run_forward_backward
[rank106]: input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/pipeline/schedule/one_f_one_b.py", line 314, in backward_step
[rank106]: optimizer.backward_by_grad(tensors_to_backward[0], grads_to_backward[0])
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/booster/plugin/hybrid_parallel_plugin.py", line 832, in backward_by_grad
[rank106]: super().backward_by_grad(tensor, grad, inputs=inputs, retain_graph=retain_graph)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/zero/low_level/low_level_optim.py", line 479, in backward_by_grad
[rank106]: torch.autograd.backward(
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/init.py", line 289, in backward
[rank106]: _engine_run_backward(
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/graph.py", line 768, in _engine_run_backward
[rank106]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/function.py", line 306, in apply
[rank106]: return user_fn(self, *args)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/utils/checkpoint.py", line 296, in backward
[rank106]: outputs = ctx.run_function(*detached_inputs)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank106]: return self._call_impl(*args, **kwargs)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank106]: return forward_call(*args, **kwargs)
[rank106]: File "/root/.cache/huggingface/modules/transformers_modules/modeling_deepseek.py", line 1228, in forward
[rank106]: hidden_states = self.mlp(hidden_states)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank106]: return self._call_impl(*args, **kwargs)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank106]: return forward_call(*args, **kwargs)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/shardformer/modeling/deepseek_v3.py", line 81, in forward
[rank106]: y = self.moe_forward(hidden_states, topk_idx, topk_weight).view(*orig_shape)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/shardformer/modeling/deepseek_v3.py", line 130, in moe_forward
[rank106]: tokens_for_this_expert = DPGradScalerIn.apply(tokens_for_this_expert, self.moe_dp_size, activate_experts[i])
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/function.py", line 574, in apply
[rank106]: return super().apply(*args, **kwargs) # type: ignore[misc]
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/moe/_operation.py", line 343, in forward
[rank106]: assert activated_experts != 0, f"shouldn't be called when no expert is activated"
[rank106]: AssertionError: shouldn't be called when no expert is activated
Environment
torch 2.4.0
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Mon_Apr__3_17:16:06_PDT_2023
Cuda compilation tools, release 12.1, V12.1.105
Build cuda_12.1.r12.1/compiler.32688072_0
96 * A100,EP 16 PP 3/6 lora训练
The text was updated successfully, but these errors were encountered:
Is there an existing issue for this bug?
The bug has not been fixed in the latest main branch
Do you feel comfortable sharing a concise (minimal) script that reproduces the error? :)
Yes, I will share a minimal reproducible script.
🐛 Describe the bug
[rank104]: Traceback (most recent call last):
[rank104]: File "lora_finetune.py", line 481, in
[rank104]: train(args)
[rank104]: File "lora_finetune.py", line 308, in train
[rank104]: outputs = booster.execute_pipeline(
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/booster/booster.py", line 221, in execute_pipeline
[rank104]: return self.plugin.execute_pipeline(data_iter, model, criterion, optimizer, return_loss, return_outputs)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/booster/plugin/hybrid_parallel_plugin.py", line 1409, in execute_pipeline
[rank104]: outputs = self.scheduler.forward_backward_step(
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/pipeline/schedule/one_f_one_b.py", line 472, in forward_backward_step
[rank104]: result = self.run_forward_backward(model, data_iter, criterion, optimizer, return_loss, return_outputs)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/pipeline/schedule/one_f_one_b.py", line 416, in run_forward_backward
[rank104]: input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/pipeline/schedule/one_f_one_b.py", line 314, in backward_step
[rank104]: optimizer.backward_by_grad(tensors_to_backward[0], grads_to_backward[0])
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/booster/plugin/hybrid_parallel_plugin.py", line 832, in backward_by_grad
[rank104]: super().backward_by_grad(tensor, grad, inputs=inputs, retain_graph=retain_graph)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/zero/low_level/low_level_optim.py", line 479, in backward_by_grad
[rank104]: torch.autograd.backward(
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/init.py", line 289, in backward
[rank104]: _engine_run_backward(
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/graph.py", line 768, in _engine_run_backward
[rank104]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/function.py", line 306, in apply
[rank104]: return user_fn(self, *args)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/utils/checkpoint.py", line 296, in backward
[rank104]: outputs = ctx.run_function(*detached_inputs)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank104]: return self._call_impl(*args, **kwargs)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank104]: return forward_call(*args, **kwargs)
[rank104]: File "/root/.cache/huggingface/modules/transformers_modules/modeling_deepseek.py", line 1228, in forward
[rank104]: hidden_states = self.mlp(hidden_states)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank104]: return self._call_impl(*args, **kwargs)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank104]: return forward_call(*args, **kwargs)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/shardformer/modeling/deepseek_v3.py", line 81, in forward
[rank104]: y = self.moe_forward(hidden_states, topk_idx, topk_weight).view(*orig_shape)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/shardformer/modeling/deepseek_v3.py", line 100, in moe_forward
[rank104]: gathered_tokens, _ = all_to_all_uneven(sorted_tokens, input_split_sizes, output_splits, self.ep_group)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/moe/_operation.py", line 452, in all_to_all_uneven
[rank104]: return AllToAllUneven.apply(inputs, input_split_sizes, output_split_sizes, group, overlap, fp8_communication)
[rank104]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/function.py", line 574, in apply
[rank104]: return super().apply(*args, **kwargs) # type: ignore[misc]
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/moe/_operation.py", line 428, in forward
[rank104]: return _all_to_all(
[rank104]: File "/opt/conda/lib/python3.8/site-packages/colossalai/moe/_operation.py", line 395, in _all_to_all
[rank104]: outputs = torch.empty(outputs_shape, dtype=inputs.dtype, device=inputs.device)
[rank104]: RuntimeError: Trying to create tensor with negative dimension -2058873370790320781: [-2058873370790320781, 7168]
EP16,PP3
此外偶发:
[rank106]: Traceback (most recent call last):
[rank106]: File "lora_finetune.py", line 481, in
[rank106]: train(args)
[rank106]: File "lora_finetune.py", line 308, in train
[rank106]: outputs = booster.execute_pipeline(
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/booster/booster.py", line 221, in execute_pipeline
[rank106]: return self.plugin.execute_pipeline(data_iter, model, criterion, optimizer, return_loss, return_outputs)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/booster/plugin/hybrid_parallel_plugin.py", line 1409, in execute_pipeline
[rank106]: outputs = self.scheduler.forward_backward_step(
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/pipeline/schedule/one_f_one_b.py", line 472, in forward_backward_step
[rank106]: result = self.run_forward_backward(model, data_iter, criterion, optimizer, return_loss, return_outputs)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/pipeline/schedule/one_f_one_b.py", line 416, in run_forward_backward
[rank106]: input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/pipeline/schedule/one_f_one_b.py", line 314, in backward_step
[rank106]: optimizer.backward_by_grad(tensors_to_backward[0], grads_to_backward[0])
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/booster/plugin/hybrid_parallel_plugin.py", line 832, in backward_by_grad
[rank106]: super().backward_by_grad(tensor, grad, inputs=inputs, retain_graph=retain_graph)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/zero/low_level/low_level_optim.py", line 479, in backward_by_grad
[rank106]: torch.autograd.backward(
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/init.py", line 289, in backward
[rank106]: _engine_run_backward(
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/graph.py", line 768, in _engine_run_backward
[rank106]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/function.py", line 306, in apply
[rank106]: return user_fn(self, *args)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/utils/checkpoint.py", line 296, in backward
[rank106]: outputs = ctx.run_function(*detached_inputs)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank106]: return self._call_impl(*args, **kwargs)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank106]: return forward_call(*args, **kwargs)
[rank106]: File "/root/.cache/huggingface/modules/transformers_modules/modeling_deepseek.py", line 1228, in forward
[rank106]: hidden_states = self.mlp(hidden_states)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank106]: return self._call_impl(*args, **kwargs)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank106]: return forward_call(*args, **kwargs)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/shardformer/modeling/deepseek_v3.py", line 81, in forward
[rank106]: y = self.moe_forward(hidden_states, topk_idx, topk_weight).view(*orig_shape)
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/shardformer/modeling/deepseek_v3.py", line 130, in moe_forward
[rank106]: tokens_for_this_expert = DPGradScalerIn.apply(tokens_for_this_expert, self.moe_dp_size, activate_experts[i])
[rank106]: File "/opt/conda/lib/python3.8/site-packages/torch/autograd/function.py", line 574, in apply
[rank106]: return super().apply(*args, **kwargs) # type: ignore[misc]
[rank106]: File "/opt/conda/lib/python3.8/site-packages/colossalai/moe/_operation.py", line 343, in forward
[rank106]: assert activated_experts != 0, f"shouldn't be called when no expert is activated"
[rank106]: AssertionError: shouldn't be called when no expert is activated
Environment
torch 2.4.0
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Mon_Apr__3_17:16:06_PDT_2023
Cuda compilation tools, release 12.1, V12.1.105
Build cuda_12.1.r12.1/compiler.32688072_0
96 * A100,EP 16 PP 3/6 lora训练
The text was updated successfully, but these errors were encountered: