|
1 | | -# 🧠 Installing Agent K |
| 1 | + # Welcome to Agent K Doc |
2 | 2 |
|
3 | | -Clone the Agent K repository: |
4 | | - |
5 | | - ```bash |
6 | | - git clone --depth=1 --branch ajar https://gitlab-uk.rnd.huawei.com/ai-uk-team/reinforcement_learning_london/pangu-agent/agent.git |
7 | | - cd agent |
8 | | - ``` |
9 | | - |
10 | | -### 📦 Creating the Environment |
11 | | - |
12 | | -1. Create an environment named `agent`. |
13 | | - |
14 | | - ```bash |
15 | | - conda create -n agent python=3.11 |
16 | | - ``` |
17 | | - |
18 | | -2. Save Python executable path. |
19 | | - |
20 | | - ```bash |
21 | | - conda activate agent |
22 | | - which python > ./third_party/agent_k_python_path.txt |
23 | | - ``` |
24 | | - |
25 | | -3. Install the required packages. |
26 | | - |
27 | | - ```bash |
28 | | - pip install -e .[datascience] |
29 | | - pip install -e ./third_party/ds-agent/ |
30 | | - ``` |
31 | | - |
32 | | -Packages required for running tabular tasks. |
33 | | - |
34 | | -1. Installing ramp-hyperopt |
35 | | - |
36 | | - ```bash |
37 | | - pip install git+https://rnd-gitlab-eu.huawei.com/Noahs-Ark/libraries/ramp-hyperopt.git@fe |
38 | | - ``` |
39 | | - |
40 | | -2. Installing ramp-workflow |
41 | | - |
42 | | - ```bash |
43 | | - pip install git+https://rnd-gitlab-eu.huawei.com/Noahs-Ark/libraries/ramp-workflow.git@generative_regression_clean |
44 | | - ``` |
45 | | - |
46 | | -Installing geckodriver |
47 | | - |
48 | | -- Download a release of geckodriver using the following command. |
49 | | - |
50 | | -`wget https://github.com/mozilla/geckodriver/releases/download/v0.32.0/geckodriver-v0.32.0-linux64.tar.gz` |
51 | | - |
52 | | -- unzip the file using the following command. |
53 | | - |
54 | | -`tar -xvzf geckodriver-v0.32.0-linux64.tar.gz` |
55 | | - |
56 | | -- set the path in your .bashrc file |
57 | | - |
58 | | -`export PATH=$PATH:/path/to/your/geckodriverdirectory/geckodriver*` |
59 | | - |
60 | | -### 🏅 Setting Up Kaggle |
61 | | - |
62 | | -1. install kaggle in your environment |
63 | | - `pip install kaggle`. |
64 | | -2. Create an API Token on https://www.kaggle.com/<username>/account. This will trigger download for kaggle.json file. |
65 | | -3. Place this file in the appropriate directory depending on your operating system. For linux the default path is |
66 | | - `~/.config/kaggle/kaggle.json`. |
67 | | -4. For more follow the steps in installation and API credentials section |
68 | | - on https://github.com/Kaggle/kaggle-api/tree/main/docs. |
69 | | - |
70 | | - #### 🔐 Adding Login Details |
71 | | - Inside `./third_party/data_preprocessing` create a json file named `kaggle_login_details.json` in the following |
72 | | - format. |
73 | | - |
74 | | - ``` |
75 | | - { |
76 | | - "username": "", |
77 | | - "email": "", |
78 | | - "pwd": "" |
79 | | - } |
80 | | - ``` |
81 | | - |
82 | | -### 📂 Setting Up Raw Data Paths |
83 | | - |
84 | | -This is the directory where when trying a new competition Agent K downloads the raw data for the competition. |
85 | | -This data will be later used during the setup stage and in the main pipeline. |
86 | | - |
87 | | -- create a file in `/path/to/your/agent_k_directory` named `root_path_to_raw_ds_data.txt` fill it with the path to the |
88 | | - directory where you want your raw data to be saved. |
89 | | - |
90 | | -```shell |
91 | | -RAW_DATA_PATH=... |
92 | | -echo $RAW_DATA_PATH > ./root_path_to_raw_data.txt |
93 | | -``` |
| 3 | +This is a minimal MkDocs site to test deployment. |
0 commit comments