Description
Unlike evaluate.EvaluationModule.add_batch
, evaluate.EvaluationModule.add
DOES NOT WORK with Metrics (evaluate.Metric(evaluate.EvaluationModule)
) whose Features (evaluate.MetricInfo(evaluate.EvaluationModuleInfo).features
) are List[datasets.Features]
, instead of datasets.Features
. Because a list
DOES NOT HAVE an encode_example
Method as in Line 533 from evaluate/src/evaluate/module.py
, throwing a ValueError
that DOES NOT TRULY RELATE to the cause itself, as it can be seen in:
ValueError: Predictions and/or references don't match the expected format. Expected format: Feature option 0: {'predictions': Value(dtype='string', id='sequence'), 'references': Sequence(feature=Value(dtype='string', id='sequence'), length=-1, id='references')} Feature option 1: {'predictions': Value(dtype='string', id='sequence'), 'references': Value(dtype='string', id='sequence')}, Input predictions: ['void hello_world()'], Input references: ['void hello_world()']
The evaluate.EvaluationModule.add
Method should instead use the selected_feature_format
Field from evaluate.EvaluationModule
, as in Line 486 from evaluate/src/evaluate/module.py
at evaluate.EvaluationModule.add_batch
.