@@ -904,13 +904,7 @@ def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weig
904904 conv_layer = type (base_layer )
905905 out_kernel = out_stride = (1 ,) * (self ._kernel_dim - 2 )
906906 self .lora_A [adapter_name ] = conv_layer (self .in_features , r , kernel_size , stride , padding , bias = False )
907-
908- if use_dora :
909- # this ensures correct dimensions for layers using the groups argument
910- self .lora_B [adapter_name ] = conv_layer (r , int (self .out_features / self .base_layer .groups ), out_kernel ,
911- out_stride ,bias = False )
912- else :
913- self .lora_B [adapter_name ] = conv_layer (r , self .out_features , out_kernel , out_stride , bias = False )
907+ self .lora_B [adapter_name ] = conv_layer (r , self .out_features , out_kernel , out_stride , bias = False )
914908
915909 if use_rslora :
916910 self .scaling [adapter_name ] = lora_alpha / math .sqrt (r )
@@ -1096,7 +1090,6 @@ def get_delta_weight(self, adapter) -> torch.Tensor:
10961090 def forward (self , x : torch .Tensor , * args , ** kwargs ) -> torch .Tensor :
10971091 self ._check_forward_args (x , * args , ** kwargs )
10981092 adapter_names = kwargs .pop ("adapter_names" , None )
1099-
11001093 if self .disable_adapters :
11011094 if self .merged :
11021095 self .unmerge ()
0 commit comments