-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathargs.py
229 lines (208 loc) · 15 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import argparse
import numpy as np
def get_args_parser():
parser = argparse.ArgumentParser('Few-shot learning script', add_help=False)
# General
parser.add_argument('--batch-size', default=1, type=int)
parser.add_argument('--num_classes', default=1000, type=int)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.set_defaults(fp16=True)
parser.add_argument('--output_dir', default='outputs/tmp',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='cuda:gpu_id for single GPU training')
parser.add_argument('--seed', default=0, type=int)
# Dataset parameters
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--pretrained-checkpoint-path', default='.', type=str,
help='path which contains the directories pretrained_ckpts and pretrained_ckpts_converted')
parser.add_argument("--dataset", choices=["cifar_fs_elite", "cifar_fs", "mini_imagenet", "meta_dataset"],
default="cifar_fs",
help="Which few-shot dataset.")
# Few-shot parameters (Mini-ImageNet & CIFAR-FS)
parser.add_argument("--nClsEpisode", default=5, type=int,
help="Number of categories in each episode.")
parser.add_argument("--nSupport", default=1, type=int,
help="Number of samples per category in the support set.")
parser.add_argument("--nQuery", default=15, type=int,
help="Number of samples per category in the query set.")
parser.add_argument("--nValEpisode", default=120, type=int,
help="Number of episodes for validation.")
parser.add_argument("--nEpisode", default=2000, type=int,
help="Number of episodes for training / testing.")
# MetaDataset parameters
parser.add_argument('--image_size', type=int, default=128,
help='Images will be resized to this value')
parser.add_argument('--base_sources', nargs="+", default=['aircraft', 'cu_birds', 'dtd', 'fungi', 'ilsvrc_2012', 'omniglot', 'quickdraw', 'vgg_flower'],
help='List of datasets to use for training')
parser.add_argument('--val_sources', nargs="+", default=['aircraft', 'cu_birds', 'dtd', 'fungi', 'ilsvrc_2012', 'omniglot', 'quickdraw', 'vgg_flower'],
help='List of datasets to use for validation')
parser.add_argument('--test_sources', nargs="+", default=['traffic_sign', 'mscoco', 'ilsvrc_2012', 'omniglot', 'aircraft', 'cu_birds', 'dtd', 'quickdraw', 'fungi', 'vgg_flower'],
help='List of datasets to use for meta-testing')
parser.add_argument('--shuffle', type=bool, default=True,
help='Whether or not to shuffle data for TFRecordDataset')
parser.add_argument('--train_transforms', nargs="+", default=['random_resized_crop', 'jitter', 'random_flip', 'to_tensor', 'normalize'],
help='Transforms applied to training data',)
parser.add_argument('--test_transforms', nargs="+", default=['resize', 'center_crop', 'to_tensor', 'normalize'],
help='Transforms applied to test data',)
parser.add_argument('--num_ways', type=int, default=None,
help='Set it if you want a fixed # of ways per task')
parser.add_argument('--num_support', type=int, default=None,
help='Set it if you want a fixed # of support samples per class')
parser.add_argument('--num_query', type=int, default=None,
help='Set it if you want a fixed # of query samples per class')
parser.add_argument('--min_ways', type=int, default=5,
help='Minimum # of ways per task')
parser.add_argument('--max_ways_upper_bound', type=int, default=50,
help='Maximum # of ways per task')
parser.add_argument('--max_num_query', type=int, default=10,
help='Maximum # of query samples')
parser.add_argument('--max_support_set_size', type=int, default=500,
help='Maximum # of support samples')
parser.add_argument('--max_support_size_contrib_per_class', type=int, default=100,
help='Maximum # of support samples per class')
parser.add_argument('--min_examples_in_class', type=int, default=0,
help='Classes that have less samples will be skipped')
parser.add_argument('--min_log_weight', type=float, default=np.log(0.5),
help='Do not touch, used to randomly sample support set')
parser.add_argument('--max_log_weight', type=float, default=np.log(2),
help='Do not touch, used to randomly sample support set')
parser.add_argument('--ignore_bilevel_ontology', action='store_true',
help='Whether or not to use superclass for BiLevel datasets (e.g Omniglot)')
parser.add_argument('--ignore_dag_ontology', action='store_true',
help='Whether to ignore ImageNet DAG ontology when sampling \
classes from it. This has no effect if ImageNet is not \
part of the benchmark.')
parser.add_argument('--ignore_hierarchy_probability', type=float, default=0.,
help='if using a hierarchy, this flag makes the sampler \
ignore the hierarchy for this proportion of episodes \
and instead sample categories uniformly.')
# CDFSL parameters
parser.add_argument('--test_n_way' , default=5, type=int, help='class num to classify for testing (validation) ')
parser.add_argument('--n_shot' , default=5, type=int, help='number of labeled data in each class, same as n_support')
parser.add_argument('--cdfsl_domains', nargs="+", default=['EuroSAT', 'ISIC', 'CropDisease', 'ChestX'], help='CDFSL datasets')
# Model params
parser.add_argument('--arch', default='dino_base_patch16_224', type=str,
help='Architecture of the backbone.')
parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.')
parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
parser.add_argument("--checkpoint_key", default="teacher", type=str, help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument('--unused_params', action='store_true')
parser.add_argument('--no-pretrain', action='store_true')
# Deployment params
parser.add_argument("--deploy", type=str, default="vanilla",
help="Which few-shot model to be deployed for meta-testing.")
parser.add_argument('--num_adapters', default=1, type=int, help='Number of adapter tokens')
parser.add_argument('--ada_steps', default=40, type=int, help='Number of feature adaptation steps')
parser.add_argument('--ada_lr', default=5e-2, type=float, help='Learning rate of feature adaptation')
parser.add_argument('--aug_prob', default=0.9, type=float, help='Probability of applying data augmentation during meta-testing')
parser.add_argument('--aug_types', nargs="+", default=['color', 'translation'],
help='color, offset, offset_h, offset_v, translation, cutout')
# Other model parameters
parser.add_argument('--img-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=False)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-5, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR (step scheduler)')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.0, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=0.,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Distillation parameters
parser.add_argument('--teacher-model', default='regnety_160', type=str, metavar='MODEL',
help='Name of teacher model to train (default: "regnety_160"')
parser.add_argument('--teacher-path', type=str, default='')
parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
# Misc
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser