Skip to content

Latest commit

 

History

History
72 lines (58 loc) · 2.56 KB

lsq.md

File metadata and controls

72 lines (58 loc) · 2.56 KB

LSQ

cifar10 fp32 w4a4 w3a3 w2a2
vggsmall 93.8 93.7 92.5 86
./run_cli.sh examples/classifier_cifar10/prototxt/vggsmall_lsq_w4a4_single_gpu.prototxt
./run_cli.sh examples/classifier_cifar10/prototxt/vggsmall_lsq_w3a3_single_gpu.prototxt
./run_cli.sh examples/classifier_cifar10/prototxt/vggsmall_lsq_w2a2_single_gpu.prototxt

The last layer is quantized.

LSQ fp32 w4a4 w3a3
AlexNet 56.55, 79.09 56.36 48.21

LSQ fp32 w4a4 w3a3 w2a2 w8a8(1epoch, quantize data)
AlexNet 56.55, 79.09 56.96, 79.46 55.31, 78.59 51.18, 75.38
ResNet18 69.76, 89.08 70.26, 89.34 69.45, 88.85 69.68 88.92

bash

AlexNet_LSQ_w4a4

python examples/classifier_imagenet/main.py ~/datasets/data.imagenet \
    -a alexnet_lsq -j 10 --pretrained -b 2048 --log-name $2 \
    --lr 0.01 --wd 1e-4 --warmup-epoch -1 \
    --gpu $1 --epochs 90 --lr-scheduler CosineAnnealingLR \
    --qw 4 --qa 4 --q-mode layer_wise \
    --debug

AlexNet_LSQ_w3a3

python examples/classifier_imagenet/main.py ~/datasets/data.imagenet \
    -a alexnet_lsq -j 10 --pretrained -b 2048 --log-name $2 \
    --lr 0.01 --wd 1e-4 --warmup-epoch -1 \
    --gpu $1 --epochs 90 --lr-scheduler CosineAnnealingLR \
    --qw 3 --qa 3 --q-mode layer_wise \
    --debug

AlexNet_LSQ_w2a2

python examples/classifier_imagenet/main.py ~/datasets/data.imagenet \
    -a alexnet_lsq -j 10 --pretrained -b 2048 --log-name $2 \
    --lr 0.01 --wd 1e-4 --warmup-epoch -1 \
    --gpu $1 --epochs 90 --lr-scheduler CosineAnnealingLR \
    --qw 3 --qa 3 --q-mode layer_wise \
    --debug

ResNet18_LSQ_w4a4

python examples/classifier_imagenet/main.py ~/datasets/data.imagenet \
    -a resnet18_lsq -j 10 -b 512 --pretrained \
    --lr 0.01 --wd 1e-4 --warmup-epoch -1 \
    --gpu $1 --log-name $2 --epochs 90 --lr-scheduler CosineAnnealingLR \
    --qw 4 --qa 4 --q-mode layer_wise \
    --debug