9897598975 " enusc_category = _map_category_region(enusc_filtered)\n",
9897698976 " enusc_renamed = _rename_enusc(enusc_filtered)\n",
9897798977 " enusc_notna = _fill_missings(enusc_renamed)\n",
98978- " enusc_dtypes = _set_data_types (enusc_notna)\n",
98978+ " enusc_dtypes = _set_data_types_not_mapped_var (enusc_notna)\n",
9897998979 " return enusc_dtypes"
9898098980 ]
9898198981 },
9899098990 " enusc_filtered = enusc[relevant_var]\n",
9899198991 " return enusc_filtered\n",
9899298992 "\n",
98993- "def _set_data_types (enusc_mapped):\n",
98993+ "def _set_data_types_not_mapped_var (enusc_mapped):\n",
9899498994 " \n",
9899598995 "\n",
9899698996 "def _rename_enusc(enusc_lower):\n",
9906799067 " return enusc_filled\n",
9906899068 "\n",
9906999069 "\n",
99070- "def _set_data_types (enusc_filled):\n",
99070+ "def _set_data_types_not_mapped_var (enusc_filled):\n",
9907199071 " for value in floats: \n",
9907299072 " enusc_filled[value] = enusc_filled[value].astype(pd.Float64Dtype())\n",
9907399073 " for var in integers: \n",
9911399113 },
9911499114 {
9911599115 "cell_type": "code",
99116- "execution_count": 7 ,
99116+ "execution_count": 12 ,
9911799117 "metadata": {},
9911899118 "outputs": [
9911999119 {
9925899258 " <td>NaN</td>\n",
9925999259 " <td>NaN</td>\n",
9926099260 " <td>NaN</td>\n",
99261- " <td>NaN </td>\n",
99261+ " <td><NA> </td>\n",
9926299262 " <td>2.0</td>\n",
9926399263 " <td>NaN</td>\n",
9926499264 " <td>Increased</td>\n",
9932799327 " <td>NaN</td>\n",
9932899328 " <td>NaN</td>\n",
9932999329 " <td>NaN</td>\n",
99330- " <td>NaN </td>\n",
99330+ " <td><NA> </td>\n",
9933199331 " <td>NaN</td>\n",
9933299332 " <td>NaN</td>\n",
9933399333 " <td>NaN</td>\n",
9939699396 " <td>NaN</td>\n",
9939799397 " <td>NaN</td>\n",
9939899398 " <td>NaN</td>\n",
99399- " <td>NaN </td>\n",
99399+ " <td><NA> </td>\n",
9940099400 " <td>NaN</td>\n",
9940199401 " <td>NaN</td>\n",
9940299402 " <td>NaN</td>\n",
9946599465 " <td>NaN</td>\n",
9946699466 " <td>NaN</td>\n",
9946799467 " <td>NaN</td>\n",
99468- " <td>NaN </td>\n",
99468+ " <td><NA> </td>\n",
9946999469 " <td>NaN</td>\n",
9947099470 " <td>NaN</td>\n",
9947199471 " <td>NaN</td>\n",
9953499534 " <td>NaN</td>\n",
9953599535 " <td>NaN</td>\n",
9953699536 " <td>NaN</td>\n",
99537- " <td>NaN </td>\n",
99537+ " <td><NA> </td>\n",
9953899538 " <td>NaN</td>\n",
9953999539 " <td>NaN</td>\n",
9954099540 " <td>NaN</td>\n",
9967299672 " <td>NaN</td>\n",
9967399673 " <td>NaN</td>\n",
9967499674 " <td>NaN</td>\n",
99675- " <td>NaN </td>\n",
99675+ " <td><NA> </td>\n",
9967699676 " <td>NaN</td>\n",
9967799677 " <td>NaN</td>\n",
9967899678 " <td>NaN</td>\n",
9974199741 " <td>NaN</td>\n",
9974299742 " <td>NaN</td>\n",
9974399743 " <td>NaN</td>\n",
99744- " <td>NaN </td>\n",
99744+ " <td><NA> </td>\n",
9974599745 " <td>2.0</td>\n",
9974699746 " <td>NaN</td>\n",
9974799747 " <td>Increased</td>\n",
9981099810 " <td>NaN</td>\n",
9981199811 " <td>NaN</td>\n",
9981299812 " <td>NaN</td>\n",
99813- " <td>NaN </td>\n",
99813+ " <td><NA> </td>\n",
9981499814 " <td>2.0</td>\n",
9981599815 " <td>NaN</td>\n",
9981699816 " <td>Increased</td>\n",
9987999879 " <td>NaN</td>\n",
9988099880 " <td>NaN</td>\n",
9988199881 " <td>NaN</td>\n",
99882- " <td>NaN </td>\n",
99882+ " <td><NA> </td>\n",
9988399883 " <td>NaN</td>\n",
9988499884 " <td>NaN</td>\n",
9988599885 " <td>NaN</td>\n",
9994899948 " <td>NaN</td>\n",
9994999949 " <td>NaN</td>\n",
9995099950 " <td>NaN</td>\n",
99951- " <td>NaN </td>\n",
99951+ " <td><NA> </td>\n",
9995299952 " <td>NaN</td>\n",
9995399953 " <td>NaN</td>\n",
9995499954 " <td>NaN</td>\n",
@@ -100219,17 +100219,17 @@
100219100219 "146293 NaN NaN \n",
100220100220 "\n",
100221100221 " reason_not_reporting_theft household_theft_victim theft_reported \\\n",
100222- "0 NaN 2.0 NaN \n",
100223- "1 NaN NaN NaN \n",
100224- "2 NaN NaN NaN \n",
100225- "3 NaN NaN NaN \n",
100226- "4 NaN NaN NaN \n",
100222+ "0 <NA> 2.0 NaN \n",
100223+ "1 <NA> NaN NaN \n",
100224+ "2 <NA> NaN NaN \n",
100225+ "3 <NA> NaN NaN \n",
100226+ "4 <NA> NaN NaN \n",
100227100227 "... ... ... ... \n",
100228- "146289 NaN NaN NaN \n",
100229- "146290 NaN 2.0 NaN \n",
100230- "146291 NaN 2.0 NaN \n",
100231- "146292 NaN NaN NaN \n",
100232- "146293 NaN NaN NaN \n",
100228+ "146289 <NA> NaN NaN \n",
100229+ "146290 <NA> 2.0 NaN \n",
100230+ "146291 <NA> 2.0 NaN \n",
100231+ "146292 <NA> NaN NaN \n",
100232+ "146293 <NA> NaN NaN \n",
100233100233 "\n",
100234100234 " crime_perception_national crime_perception_commune \\\n",
100235100235 "0 Increased Increased \n",
@@ -100325,7 +100325,7 @@
100325100325 "[146294 rows x 66 columns]"
100326100326 ]
100327100327 },
100328- "execution_count": 7 ,
100328+ "execution_count": 12 ,
100329100329 "metadata": {},
100330100330 "output_type": "execute_result"
100331100331 }
@@ -100337,7 +100337,7 @@
100337100337 },
100338100338 {
100339100339 "cell_type": "code",
100340- "execution_count": 8 ,
100340+ "execution_count": 11 ,
100341100341 "metadata": {},
100342100342 "outputs": [
100343100343 {
@@ -100357,7 +100357,7 @@
100357100357 "Length: 66, dtype: object"
100358100358 ]
100359100359 },
100360- "execution_count": 8 ,
100360+ "execution_count": 11 ,
100361100361 "metadata": {},
100362100362 "output_type": "execute_result"
100363100363 }
0 commit comments