@@ -39,6 +39,14 @@ def train_and_compare_models(rf_name, bert_name, hf_name):
3939 )
4040 )
4141
42+ # Create saving folder if not existing yet
43+ rf_path = os .path .join (saving_path , "random_forest" )
44+ if not os .path .exists (rf_path ):
45+ os .makedirs (rf_path )
46+ bert_path = os .path .join (saving_path , "bert" )
47+ if not os .path .exists (bert_path ):
48+ os .makedirs (bert_path )
49+
4250 # Parameter for the training of a model with random forest algorithm
4351 random_forest_parameter_normal = {
4452 "n_estimators" : 450 ,
@@ -59,13 +67,11 @@ def train_and_compare_models(rf_name, bert_name, hf_name):
5967
6068 # Model trained with random forest algorithm
6169 rf_save_path = os .path .join (
62- saving_path ,
63- "random_forest" ,
70+ rf_path ,
6471 rf_name + ".joblib"
6572 )
6673 rf_log_path = os .path .join (
67- saving_path ,
68- "random_forest" ,
74+ rf_path ,
6975 rf_name + ".log"
7076 )
7177
@@ -89,10 +95,10 @@ def train_and_compare_models(rf_name, bert_name, hf_name):
8995 max_features = 3000 ,
9096 training_parameters = random_forest_parameter_normal
9197 )
92- print (f"Rnadom forest { rf_name } successfully trained." )
98+ print (f"Random forest { rf_name } successfully trained." )
9399 # Model trained with BERT algorithm
94- bert_save_path = os .path .join (saving_path , "bert" , bert_name )
95- bert_log_path = os .path .join (saving_path , "bert" , bert_name + ".log" )
100+ bert_save_path = os .path .join (bert_path , bert_name )
101+ bert_log_path = os .path .join (bert_path , "bert" , bert_name + ".log" )
96102
97103 # Check if the paths are free
98104 if os .path .isfile (bert_save_path ) is True :
0 commit comments