|
| 1 | +import numpy as np |
| 2 | +import pandas as pd |
| 3 | + |
| 4 | +from final_project_btb.analysis.data_extraction import extracting_data |
| 5 | + |
| 6 | + |
| 7 | +def clean_data_extracted(image_path): |
| 8 | + """Extract the data, arrange rows and columns, clean the dataframe. |
| 9 | +
|
| 10 | + Args: |
| 11 | + image_path (str): Path to the input image on which object detection |
| 12 | + predictions will be performed. |
| 13 | +
|
| 14 | + Returns: |
| 15 | + df(DataFrame): Semi-Clean DataFrame ready to graph some results. |
| 16 | + """ |
| 17 | + original_df = extracting_data(image_path) |
| 18 | + original_df = _concatenate_extra_rows(original_df) |
| 19 | + original_df = _delete_empty_rows(original_df) |
| 20 | + |
| 21 | + rename_dict = { |
| 22 | + "Col_1": "town_and_county", |
| 23 | + "Col_2": "name_of_bank", |
| 24 | + "Col_3": "president", |
| 25 | + "Col_4": "vice_president", |
| 26 | + "Col_5": "cashier", |
| 27 | + "Col_6": "asst_cashier", |
| 28 | + "Col_7": "paid_up_capital", |
| 29 | + "Col_8": "surp_and_prof", |
| 30 | + "Col_9": "deposits", |
| 31 | + "Col_10": "loans_and_discounts_stocks_and_securities", |
| 32 | + "Col_11": "cash_and_exchanges", |
| 33 | + "Col_12": "principal_correspondence", |
| 34 | + } |
| 35 | + df = original_df.copy() |
| 36 | + df = df.rename(columns=rename_dict) |
| 37 | + |
| 38 | + # Lista de columnas numéricas |
| 39 | + numeric_cols = [ |
| 40 | + "paid_up_capital", |
| 41 | + "surp_and_prof", |
| 42 | + "deposits", |
| 43 | + "loans_and_discounts_stocks_and_securities", |
| 44 | + "cash_and_exchanges", |
| 45 | + ] |
| 46 | + |
| 47 | + df = _clean_number_columns(df, numeric_cols) |
| 48 | + df = _delete_columns_with_na(df, numeric_cols) |
| 49 | + |
| 50 | + return df |
| 51 | + |
| 52 | + |
| 53 | +def _concatenate_extra_rows(base_de_datos): |
| 54 | + """Concatenates rows with empty cell in first column.""" |
| 55 | + df_array = base_de_datos.to_numpy(copy=True) |
| 56 | + |
| 57 | + for i in range(1, len(df_array)): |
| 58 | + if df_array[i, 0] == "": |
| 59 | + df_array[i - 1] = np.where( |
| 60 | + df_array[i] != "", df_array[i - 1] + " " + df_array[i], df_array[i - 1] |
| 61 | + ) |
| 62 | + df_array[i] = "" |
| 63 | + |
| 64 | + df_final = pd.DataFrame(df_array, columns=base_de_datos.columns) |
| 65 | + return df_final |
| 66 | + |
| 67 | + |
| 68 | +def _delete_empty_rows(base_de_datos): |
| 69 | + """Eliminates every row with all empty cells.""" |
| 70 | + df_without_empty_rows = base_de_datos.replace("", np.nan).dropna(how="all") |
| 71 | + df_without_empty_column1 = df_without_empty_rows.dropna( |
| 72 | + subset=[df_without_empty_rows.columns[0]] |
| 73 | + ) |
| 74 | + |
| 75 | + return df_without_empty_column1.reset_index(drop=True) |
| 76 | + |
| 77 | + |
| 78 | +def _clean_number_columns(df, name_columns): |
| 79 | + """Eliminates every character that is not a number in number columns.""" |
| 80 | + df_clean = df.copy() |
| 81 | + for col in name_columns: |
| 82 | + df_clean[col] = df_clean[col].astype(str).replace(r"\D", "", regex=True) |
| 83 | + df_clean[col] = pd.to_numeric(df_clean[col]).astype(pd.UInt32Dtype()) |
| 84 | + return df_clean |
| 85 | + |
| 86 | + |
| 87 | +def _delete_columns_with_na(df, name_columns): |
| 88 | + """Eliminates every row with all na.""" |
| 89 | + df_clean = df.copy() |
| 90 | + df_clean = df_clean.dropna(subset=name_columns, how="all") |
| 91 | + return df_clean |
0 commit comments