-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_cnn.py
294 lines (239 loc) · 11 KB
/
keras_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import keras
from keras.datasets import mnist
from keras.layers import Dense, Flatten
from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras.models import Sequential
import matplotlib.pylab as plt
import numpy as np
import pandas as pd
import sys
import argparse
# Define the class labels
class_labels = {str(x):x for x in range(10)}
class_labels.update({'+':10, 'times':11, '-':12 })
label_class = dict( zip(class_labels.values(), class_labels.keys() ))
def bool_filter(x):
if x.lower() in ['true', 't', 'yes', 'y']: return True
elif x.lower() in ['no', 'false', 'n', 'f']: return False
else: raise NameError('True or False question bro...')
class DataLoader():
def __init__(self, train=True, **kwargs):
self.ver = kwargs.pop('data_ver', 1)
self.data, self.labels = self.load_data(kwargs.pop('class_labels', {str(x):x for x in range(10)}))
if train:
self.data = self.data['train']
self.labels = self.labels['train']
else:
self.data = self.data['val']
self.labels = self.labels['val']
self.transform = kwargs.pop('transform', None)
#print(self.labels.shape)
assert self.data.shape[0] == self.labels.shape[0], "Dimension mismatch"
def load_data(self, class_labels, train=0.90, val=0.10):
'''
Function to Load data from .npy files and split them into training and validation sets
Inputs
class labels : Dictionary of class labels (dict)
data_name : name of .npy data file, with path (str)
label_name : name of .npy label file, with path (str)
train : fraction of samples used in training set (float)
val : fraction of samples used in training set (float)
'''
data = pd.DataFrame(np.load('data/training-data/data_ver{0}.npy'.format(self.ver)))
labels = pd.DataFrame(np.load('data/training-data/labels_ver{0}.npy'.format(self.ver)))
labels = labels.rename(columns = {0:'labels'})
labels['labels'] = labels['labels'].map(class_labels)
assert data.shape[0] == labels.shape[0]
assert isinstance(train, float)
isinstance(val, float), "train and val must be of type float, not {0} and {1}".format(type(train), type(val))
assert ((train + val) == 1.0), "train + val must equal 1.0"
one_hot = pd.get_dummies(labels['labels'])
sidx = int(data.shape[0]*train)
_data = {'train': data.iloc[:sidx].as_matrix(), 'val': data.iloc[sidx+1:].as_matrix()}
_labels= {'train': one_hot.iloc[:sidx,:].as_matrix(), 'val': one_hot.iloc[sidx+1:,:].as_matrix()}
assert (_data['train'].shape[0] == _labels['train'].shape[0])
assert (_data['val'].shape[0] == _labels['val'].shape[0])
return _data, _labels
def __len__(self):
return self.data.shape[0]
class AccuracyHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.acc = []
def on_epoch_end(self, batch, logs={}):
self.acc.append(logs.get('acc'))
if __name__ == '__main__':
parser = argparse.ArgumentParser('')
parser.add_argument('-model', default=3, type=int, help='Type of model to use')
parser.add_argument('-ver', default=1, type=int, help='version of data to use')
parser.add_argument('-verbose', default=False, type=bool_filter, help='show a lot more outputs? [y/n]')
args = parser.parse_args()
# input image dimensions
img_x, img_y = 28, 28
# load the MNIST data set, which already splits into train and test sets for us
#(x_train, y_train), (x_test, y_test) = mnist.load_data()
training_data_loader = DataLoader(train=True, class_labels=class_labels, data_ver=1)
test_data_loader = DataLoader(train=False, class_labels=class_labels, data_ver=1)
x_train, y_train = training_data_loader.data, training_data_loader.labels
x_test, y_test = test_data_loader.data, test_data_loader.labels
# reshape the data into a 4D tensor - (sample_number, x_img_size, y_img_size, num_channels)
# because the MNIST is greyscale, we only have a single channel - RGB colour images would have 3
x_train = x_train.reshape(x_train.shape[0], img_x, img_y, 1)
x_test = x_test.reshape(x_test.shape[0], img_x, img_y, 1)
input_shape = (img_x, img_y, 1)
# convert the data to the right type
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
if args.verbose:
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices - this is for use in the
#y_train = keras.utils.to_categorical(y_train)
#y_test = keras.utils.to_categorical(y_test)
if args.verbose:
print('y_train shape: ', y_train.shape)
print('y_test shape: ', y_test.shape)
print(y_train.shape[0], 'train samples')
print(y_test.shape[0], 'test samples')
batch_size = 256
num_classes = y_train.shape[1]
epochs = 25
if args.model == 0:
# BEST ONE
model = Sequential()
model.add(Conv2D(256, kernel_size=(5, 5), strides=(2, 2),input_shape=input_shape))
model.add(BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.1))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3)))
model.add(BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.1))
model.add(Dropout(0.2))
model.add(Conv2D(64, (3, 3)))
model.add(BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.1))
model.add(Dropout(0.2))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1000 ))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.1))
model.add(Dense(256 ))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.1))
model.add(Dense(num_classes, activation='softmax'))
if args.model == 1:
model = Sequential()
model.add(Conv2D(256, kernel_size=(3, 3),input_shape=input_shape))
model.add(BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=(3, 3), strides=(2, 2)))
model.add(BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.2))
model.add(Dropout(0.2))
model.add(Conv2D(64, kernel_size=(3, 3), strides=(2, 2)))
model.add(BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.2))
model.add(Dropout(0.2))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1000 ))
model.add(BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.1))
model.add(Dropout(0.1))
model.add(Dense(256 ))
model.add(BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.1))
model.add(Dropout(0.1))
model.add(Dense(64))
model.add(BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.1))
model.add(Dropout(0.1))
model.add(Dense(num_classes, activation='softmax'))
if args.model == 2:
model = Sequential()
model.add(Conv2D(96, kernel_size=(3, 3), input_shape=input_shape))
model.add(keras.layers.ELU(alpha=0.1))
model.add(Conv2D(96, kernel_size=(1, 1)))
model.add(keras.layers.ELU(alpha=0.1))
model.add(BatchNormalization())
model.add(Dropout(0.2))
model.add(Conv2D(192, kernel_size=(3, 3)))
model.add(keras.layers.ELU(alpha=0.1))
model.add(Conv2D(192, kernel_size=(1, 1)))
model.add(keras.layers.ELU(alpha=0.1))
model.add(BatchNormalization())
model.add(Dropout(0.2))
model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))
model.add(Conv2D(192, kernel_size=(1, 1)))
model.add(keras.layers.ELU(alpha=0.1))
model.add(BatchNormalization())
model.add(Dropout(0.1))
model.add(AveragePooling2D(pool_size=(3,3)))
model.add(Flatten())
model.add(Dense(256 ))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.1))
model.add(Dense(num_classes, activation='softmax'))
if args.model == 3:
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), strides=(1, 1),input_shape=input_shape))
model.add(BatchNormalization())
model.add( keras.layers.LeakyReLU(alpha=0.1) )
model.add(Dropout(0.1))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(BatchNormalization())
model.add( keras.layers.LeakyReLU(alpha=0.1) )
model.add(Dropout(0.1))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1000 ))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.1))
model.add(Dense(256 ))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.1))
model.add(Dense(num_classes, activation='softmax'))
adam1 = keras.optimizers.Adam(lr=5e-4, beta_1=0.9, beta_2=0.999)
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=adam1,metrics=['accuracy'] )
model.summary()
history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size,validation_split=0.1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
# summarize history for accuracy
plt.figure(figsize=(8,4))
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('CNN model ver{0} accuracy'.format(args.ver),fontsize = 14)
plt.xticks(fontsize = 13)
plt.yticks(fontsize = 13)
plt.ylabel('accuracy',fontsize = 14)
plt.xlabel('epochs',fontsize = 14)
plt.legend(['train', 'val'], loc='upper left',fontsize = 12)
plt.savefig('cnn-m{1}-ver{0}-acc.png'.format(args.ver, args.model))
# summarize history for loss
plt.figure(figsize=(8,4))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('CNN model ver{0} loss'.format(args.ver),fontsize = 14)
plt.xticks(fontsize = 13)
plt.yticks(fontsize = 13)
plt.ylabel('loss',fontsize = 14)
plt.xlabel('epochs',fontsize = 14)
plt.legend(['train', 'val'], loc='upper right', fontsize = 12)
plt.savefig('cnn-m{1}-ver{0}-loss.png'.format(args.ver, args.model))
mjson = model.to_json()
with open('saved_models/cnn_m{1}_v{0}.json'.format(args.ver, args.model), 'w') as f:
f.write(mjson)
model.save_weights("saved_models/cnn_m{1}_v{0}.h5".format(args.ver, args.model))
print("Saved model to disk")