-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathspeech_to_text.wait-k-stride-n.agent.py
474 lines (415 loc) · 15.8 KB
/
speech_to_text.wait-k-stride-n.agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
##########################################
# Simultaneous Speech-to-Text Translation Agent for Wait-k Policy
#
# StreamSpeech: Simultaneous Speech-to-Speech Translation with Multi-task Learning (ACL 2024)
##########################################
from simuleval.utils import entrypoint
from simuleval.data.segments import SpeechSegment
from simuleval.agents import SpeechToTextAgent
from simuleval.agents.actions import WriteAction, ReadAction
from fairseq.checkpoint_utils import load_model_ensemble_and_task
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
from pathlib import Path
from typing import Any, Dict, Optional, Union
from fairseq.data.audio.audio_utils import convert_waveform
from examples.speech_to_text.data_utils import extract_fbank_features
import ast
import math
import os
import json
import numpy as np
import torch
import torchaudio.compliance.kaldi as kaldi
import yaml
from fairseq import checkpoint_utils, tasks, utils, options
from fairseq.file_io import PathManager
from fairseq import search
from fairseq.data.audio.feature_transforms import CompositeAudioFeatureTransform
from fairseq.models.text_to_speech.vocoder import CodeHiFiGANVocoder
SHIFT_SIZE = 10
WINDOW_SIZE = 25
ORG_SAMPLE_RATE = 48000
SAMPLE_RATE = 16000
FEATURE_DIM = 80
BOW_PREFIX = "\u2581"
DEFAULT_EOS = 2
class OnlineFeatureExtractor:
"""
Extract speech feature on the fly.
"""
def __init__(self, args, cfg):
self.shift_size = args.shift_size
self.window_size = args.window_size
assert self.window_size >= self.shift_size
self.sample_rate = args.sample_rate
self.feature_dim = args.feature_dim
self.num_samples_per_shift = int(self.shift_size * self.sample_rate / 1000)
self.num_samples_per_window = int(self.window_size * self.sample_rate / 1000)
self.len_ms_to_samples = lambda x: x * self.sample_rate / 1000
self.previous_residual_samples = []
self.global_cmvn = args.global_cmvn
self.device = "cuda" if args.device == "gpu" else "cpu"
self.feature_transforms = CompositeAudioFeatureTransform.from_config_dict(
{"feature_transforms": ["utterance_cmvn"]}
)
def clear_cache(self):
self.previous_residual_samples = []
def __call__(self, new_samples, sr=ORG_SAMPLE_RATE):
samples = new_samples
# # num_frames is the number of frames from the new segment
num_frames = math.floor(
(len(samples) - self.len_ms_to_samples(self.window_size - self.shift_size))
/ self.num_samples_per_shift
)
# # the number of frames used for feature extraction
# # including some part of thte previous segment
effective_num_samples = int(
num_frames * self.len_ms_to_samples(self.shift_size)
+ self.len_ms_to_samples(self.window_size - self.shift_size)
)
samples = samples[:effective_num_samples]
waveform, sample_rate = convert_waveform(
torch.tensor([samples]), sr, to_mono=True, to_sample_rate=16000
)
output = extract_fbank_features(waveform, 16000)
output = self.transform(output)
return torch.tensor(output, device=self.device)
def transform(self, input):
if self.global_cmvn is None:
return input
mean = self.global_cmvn["mean"]
std = self.global_cmvn["std"]
x = np.subtract(input, mean)
x = np.divide(x, std)
return x
@entrypoint
class EnglishSpeechCounter(SpeechToTextAgent):
"""
Incrementally feed text to this offline Fastspeech2 TTS model,
with a minimum numbers of phonemes every chunk.
"""
def __init__(self, args):
super().__init__(args)
self.eos = DEFAULT_EOS
self.gpu = self.args.device == "gpu"
self.device = "cuda" if args.device == "gpu" else "cpu"
self.args = args
self.load_model_vocab(args)
self.max_len = args.max_len
self.force_finish = args.force_finish
torch.set_grad_enabled(False)
tgt_dict_mt = self.dict[f"{self.models[0].mt_task_name}"]
tgt_dict = self.dict["tgt"]
args.user_dir=args.agent_dir
utils.import_user_module(args)
from agent.sequence_generator import SequenceGenerator
self.generator = SequenceGenerator(
self.models,
tgt_dict,
beam_size=1,
max_len_a=1,
max_len_b=200,
max_len=0,
min_len=1,
normalize_scores=True,
len_penalty=1.0,
unk_penalty=0.0,
temperature=1.0,
match_source_len=False,
no_repeat_ngram_size=0,
search_strategy=search.BeamSearch(tgt_dict),
eos=tgt_dict.eos(),
symbols_to_strip_from_output=None,
)
self.generator_mt = SequenceGenerator(
self.models,
tgt_dict_mt,
beam_size=1,
max_len_a=1,
max_len_b=200,
max_len=0,
min_len=1,
normalize_scores=True,
len_penalty=1.0,
unk_penalty=0.0,
temperature=1.0,
match_source_len=False,
no_repeat_ngram_size=0,
search_strategy=search.BeamSearch(tgt_dict_mt),
eos=tgt_dict_mt.eos(),
symbols_to_strip_from_output=None,
)
from agent.tts.vocoder import CodeHiFiGANVocoderWithDur
with open(args.vocoder_cfg) as f:
vocoder_cfg = json.load(f)
self.vocoder = CodeHiFiGANVocoderWithDur(args.vocoder, vocoder_cfg)
if self.device == "cuda":
self.vocoder = self.vocoder.cuda()
self.dur_prediction = args.dur_prediction
self.lagging_k1 = args.lagging_k1
self.lagging_k2 = args.lagging_k2
self.segment_size = args.segment_size
self.stride_n = args.stride_n
self.unit_per_subword = args.unit_per_subword
self.stride_n2 = args.stride_n2
self.reset()
@staticmethod
def add_args(parser):
parser.add_argument(
"--model-path",
type=str,
required=True,
help="path to your pretrained model.",
)
parser.add_argument(
"--data-bin", type=str, required=True, help="Path of data binary"
)
parser.add_argument(
"--config-yaml", type=str, default=None, help="Path to config yaml file"
)
parser.add_argument(
"--multitask-config-yaml",
type=str,
default=None,
help="Path to config yaml file",
)
parser.add_argument(
"--global-stats",
type=str,
default=None,
help="Path to json file containing cmvn stats",
)
parser.add_argument(
"--tgt-splitter-type",
type=str,
default="SentencePiece",
help="Subword splitter type for target text",
)
parser.add_argument(
"--tgt-splitter-path",
type=str,
default=None,
help="Subword splitter model path for target text",
)
parser.add_argument(
"--user-dir",
type=str,
default="researches/ctc_unity",
help="User directory for model",
)
parser.add_argument(
"--agent-dir",
type=str,
default="agent",
help="User directory for agents",
)
parser.add_argument(
"--max-len", type=int, default=200, help="Max length of translation"
)
parser.add_argument(
"--force-finish",
default=False,
action="store_true",
help="Force the model to finish the hypothsis if the source is not finished",
)
parser.add_argument(
"--shift-size",
type=int,
default=SHIFT_SIZE,
help="Shift size of feature extraction window.",
)
parser.add_argument(
"--window-size",
type=int,
default=WINDOW_SIZE,
help="Window size of feature extraction window.",
)
parser.add_argument(
"--sample-rate", type=int, default=SAMPLE_RATE, help="Sample rate"
)
parser.add_argument(
"--feature-dim",
type=int,
default=FEATURE_DIM,
help="Acoustic feature dimension.",
)
parser.add_argument(
"--vocoder", type=str, required=True, help="path to the CodeHiFiGAN vocoder"
)
parser.add_argument(
"--vocoder-cfg",
type=str,
required=True,
help="path to the CodeHiFiGAN vocoder config",
)
parser.add_argument(
"--dur-prediction",
action="store_true",
help="enable duration prediction (for reduced/unique code sequences)",
)
parser.add_argument("--lagging-k1", type=int, default=3, help="lagging number")
parser.add_argument("--lagging-k2", type=int, default=1, help="lagging number")
parser.add_argument(
"--segment-size", type=int, default=320, help="segment-size"
)
parser.add_argument("--stride-n", type=int, default=1, help="lagging number")
parser.add_argument("--stride-n2", type=int, default=1, help="lagging number")
parser.add_argument(
"--unit-per-subword", type=int, default=15, help="lagging number"
)
def reset(self):
self.src_seg_num = 0
self.tgt_subwords_indices = None
self.tgt_units_indices = None
self.tgt_text = ""
self.unit = None
self.wav = []
self.states.reset()
def to_device(self, tensor):
if self.gpu:
return tensor.cuda()
else:
return tensor.cpu()
def load_model_vocab(self, args):
filename = args.model_path
if not os.path.exists(filename):
raise IOError("Model file not found: {}".format(filename))
state = checkpoint_utils.load_checkpoint_to_cpu(filename)
state["cfg"].common['user_dir']=args.user_dir
utils.import_user_module(state["cfg"].common)
task_args = state["cfg"]["task"]
task_args.data = args.data_bin
args.global_cmvn = None
if args.config_yaml is not None:
task_args.config_yaml = args.config_yaml
with open(os.path.join(args.data_bin, args.config_yaml), "r") as f:
config = yaml.load(f, Loader=yaml.BaseLoader)
if "global_cmvn" in config:
args.global_cmvn = np.load(config["global_cmvn"]["stats_npz_path"])
self.feature_extractor = OnlineFeatureExtractor(args, config)
if args.multitask_config_yaml is not None:
task_args.multitask_config_yaml = args.multitask_config_yaml
task = tasks.setup_task(task_args)
overrides = ast.literal_eval(state["cfg"].common_eval.model_overrides)
models, saved_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(filename),
arg_overrides=overrides,
task=task,
suffix=state["cfg"].checkpoint.checkpoint_suffix,
strict=(state["cfg"].checkpoint.checkpoint_shard_count == 1),
num_shards=state["cfg"].checkpoint.checkpoint_shard_count,
)
self.models = models
for model in self.models:
model.eval()
model.share_memory()
if self.gpu:
model.cuda()
# Set dictionary
self.dict = {}
self.dict["tgt"] = task.target_dictionary
for k, v in task.multitask_tasks.items():
self.dict[k] = v.tgt_dict
def policy(self):
src_seg_num = len(self.states.source) // (
self.segment_size * ORG_SAMPLE_RATE / 1000
)
cur_tgt_subword_tokens = (
self.tgt_subwords_indices.size(-1)
if self.tgt_subwords_indices is not None
else 0
)
cur_tgt_unit_tokens = (
self.tgt_units_indices.size(-1) if self.tgt_units_indices is not None else 0
)
if (
src_seg_num <= self.src_seg_num or src_seg_num < self.lagging_k1
) and not self.states.source_finished:
return ReadAction()
else:
self.src_seg_num = src_seg_num
subword_tokens = (
(self.src_seg_num - self.lagging_k1) // self.stride_n
) * self.stride_n
unit_tokens = (
((subword_tokens - self.lagging_k2) // self.stride_n2)
* self.stride_n2
* self.unit_per_subword
)
new_subword_tokens = (
(subword_tokens - self.tgt_subwords_indices.size(-1))
if self.tgt_subwords_indices is not None
else subword_tokens
)
new_unit_tokens = (
(unit_tokens - self.tgt_units_indices.size(-1))
if self.tgt_units_indices is not None
else unit_tokens
)
if (
new_subword_tokens < 1 or new_unit_tokens < 1
) and not self.states.source_finished:
return ReadAction()
if self.states.source_finished:
new_subword_tokens = -1
new_unit_tokens = -1
new_subword_tokens = int(new_subword_tokens)
new_unit_tokens = int(new_unit_tokens)
feature = self.feature_extractor(self.states.source)
if feature.size(0) == 0 and not self.states.source_finished:
return ReadAction()
src_indices = feature.unsqueeze(0)
src_lengths = torch.tensor([feature.size(0)], device=self.device).long()
self.encoder_outs = self.generator.model.forward_encoder(
{"src_tokens": src_indices, "src_lengths": src_lengths}
)
single_model = self.generator.model.single_model
mt_decoder = getattr(single_model, f"{single_model.mt_task_name}_decoder")
# 1. MT decoder
finalized_mt = self.generator_mt.generate_decoder(
self.encoder_outs,
src_indices,
src_lengths,
{
"id": 1,
"net_input": {"src_tokens": src_indices, "src_lengths": src_lengths},
},
self.tgt_subwords_indices,
None,
None,
aux_task_name=single_model.mt_task_name,
max_new_tokens=new_subword_tokens,
)
self.tgt_subwords_indices = finalized_mt[0][0]["tokens"][:-1].unsqueeze(0)
max_tgt_len = max([len(hypo[0]["tokens"]) for hypo in finalized_mt])
prev_output_tokens_mt = (
src_indices.new_zeros(src_indices.shape[0], max_tgt_len)
.fill_(mt_decoder.padding_idx)
.int()
)
for i, hypo in enumerate(finalized_mt):
i_beam = 0
tmp = hypo[i_beam]["tokens"].int()
prev_output_tokens_mt[i, 0] = self.generator_mt.eos
if tmp[-1] == self.generator_mt.eos:
tmp = tmp[:-1]
prev_output_tokens_mt[i, 1 : len(tmp) + 1] = tmp
tokens = [self.generator_mt.tgt_dict[c] for c in tmp]
text = "".join([self.generator_mt.tgt_dict[c] for c in tmp])
text = text.replace("_", " ")
text = text.replace("▁", " ")
text = text.replace("<unk>", " ")
text = text.replace("<s>", "")
text = text.replace("</s>", "")
if len(text) > 0 and text[0] == " ":
text = text[1:]
text = " ".join(tokens)
new_text = text[len(self.tgt_text) :]
self.tgt_text = text
if self.states.source_finished and new_subword_tokens == -1:
self.states.target_finished = True
self.reset()
return WriteAction(
new_text,
finished=self.states.target_finished,
)