-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathprep_cvss_c_multilingual_data.py
619 lines (564 loc) · 21.2 KB
/
prep_cvss_c_multilingual_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import argparse
import logging
from pathlib import Path
import shutil
from tempfile import NamedTemporaryFile
from typing import Optional, Tuple
import pandas as pd
import torchaudio
import soundfile as sf
from torch import Tensor
from torch.utils.data import Dataset
from utils import download_url, extract_archive
from tqdm import tqdm
import sys
import os
dir_path = os.path.dirname(os.path.realpath(__file__))
parent_dir_path = os.path.abspath(os.path.join(dir_path, os.pardir))
sys.path.insert(0, parent_dir_path)
import numpy as np
from fairseq.data.audio.audio_utils import convert_waveform
from examples.speech_synthesis.data_utils import extract_logmel_spectrogram
from examples.speech_to_speech.preprocessing.data_utils import (
gen_config_yaml,
load_units,
process_units,
)
from examples.speech_to_text.data_utils import (
create_zip,
extract_fbank_features,
get_zip_manifest,
load_df_from_tsv,
save_df_to_tsv,
cal_gcmvn_stats,
)
from data_utils import gen_config_yaml as gen_config_yaml_gcmvn
log = logging.getLogger(__name__)
MANIFEST_COLUMNS = [
"id",
"src_audio",
"src_n_frames",
"src_text",
"tgt_text",
"tgt_audio",
"tgt_n_frames",
]
class CoVoST(Dataset):
"""Create a Dataset for CoVoST (https://github.com/facebookresearch/covost).
Args:
root (str): root path to the dataset and generated manifests/features
source_language (str): source (audio) language
target_language (str, optional): target (text) language,
None for no translation (default: None)
version (int, optional): CoVoST version. (default: 2)
download (bool, optional): Whether to download the dataset if it is not
found at root path. (default: ``False``).
"""
COVOST_URL_TEMPLATE = (
"https://dl.fbaipublicfiles.com/covost/"
"covost_v2.{src_lang}_{tgt_lang}.tsv.tar.gz"
)
VERSIONS = {2}
SPLITS = ["train", "dev", "test"]
XX_EN_LANGUAGES = {
1: ["fr", "de", "nl", "ru", "es", "it", "tr", "fa", "sv-SE", "mn", "zh-CN"],
2: [
"fr",
"de",
"es",
"ca",
"it",
"ru",
"zh-CN",
"pt",
"fa",
"et",
"mn",
"nl",
"tr",
"ar",
"sv-SE",
"lv",
"sl",
"ta",
"ja",
"id",
"cy",
],
}
EN_XX_LANGUAGES = {
1: [],
2: [
"de",
"tr",
"fa",
"sv-SE",
"mn",
"zh-CN",
"cy",
"ca",
"sl",
"et",
"id",
"ar",
"ta",
"lv",
"ja",
],
}
def __init__(
self,
root: str,
split: str,
source_language: str,
target_language: Optional[str] = None,
version: int = 2,
) -> None:
assert version in self.VERSIONS and split in self.SPLITS
assert source_language is not None
self.no_translation = target_language is None
if not self.no_translation:
assert "en" in {source_language, target_language}
if source_language == "en":
assert target_language in self.EN_XX_LANGUAGES[version]
else:
assert source_language in self.XX_EN_LANGUAGES[version]
else:
# Hack here so that we can get "split" column from CoVoST TSV.
# Note that we use CoVoST train split for ASR which is an extension
# to Common Voice train split.
target_language = "de" if source_language == "en" else "en"
self.root: Path = Path(root)
cv_tsv_path = self.root / "validated.tsv"
assert cv_tsv_path.is_file()
covost_url = self.COVOST_URL_TEMPLATE.format(
src_lang=source_language, tgt_lang=target_language
)
covost_archive = self.root / Path(covost_url).name
if not covost_archive.is_file():
download_url(covost_url, self.root.as_posix(), hash_value=None)
extract_archive(covost_archive.as_posix())
cv_tsv = load_df_from_tsv(cv_tsv_path)
covost_tsv = load_df_from_tsv(
self.root / Path(covost_url).name.replace(".tar.gz", "")
)
df = pd.merge(
left=cv_tsv[["path", "sentence", "client_id"]],
right=covost_tsv[["path", "translation", "split"]],
how="inner",
on="path",
)
if split == "train":
df = df[(df["split"] == split) | (df["split"] == f"{split}_covost")]
else:
df = df[df["split"] == split]
data = df.to_dict(orient="index").items()
data = [v for k, v in sorted(data, key=lambda x: x[0])]
self.data = []
for e in data:
try:
path = self.root / "clips" / e["path"]
_ = torchaudio.info(path.as_posix())
self.data.append(e)
except RuntimeError:
pass
def __getitem__(
self, n: int
) -> Tuple[Tensor, int, str, str, Optional[str], str, str]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
tuple: ``(waveform, sample_rate, sentence, translation, speaker_id,
sample_id)``
"""
data = self.data[n]
path = self.root / "clips" / data["path"]
waveform, sample_rate = torchaudio.load(path)
sentence = data["sentence"]
translation = None if self.no_translation else data["translation"]
speaker_id = data["client_id"]
_id = data["path"].replace(".mp3", "")
return waveform, sample_rate, sentence, translation, speaker_id, _id
def __len__(self) -> int:
return len(self.data)
class CVSS_C(CoVoST):
def __init__(
self,
cvss_root: str,
covost_root: str,
split: str,
source_language: str,
target_language: Optional[str] = None,
version: int = 2,
) -> None:
super().__init__(covost_root, split, source_language, target_language, version)
self.cvss_root = cvss_root
self.split = split
with open(cvss_root / f"{split}.tsv", "r") as f:
target_data = f.read().splitlines()
target_data = [x.split("\t") for x in target_data]
target_dict = {k: v for k, v in target_data}
self.s2s_data = []
for e in self.data:
if e["path"] in target_dict:
e["translation"] = target_dict[e["path"]]
self.s2s_data.append(e)
def __getitem__(
self, n: int
) -> Tuple[Tensor, int, str, str, Optional[str], str, str]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
tuple: ``(waveform, sample_rate, sentence, translation, speaker_id,
sample_id)``
"""
data = self.s2s_data[n]
src_path = self.root / "clips" / data["path"]
src_waveform, src_sample_rate = torchaudio.load(src_path)
tgt_path = self.cvss_root / self.split / f"{data['path']}.wav"
tgt_waveform, tgt_sample_rate = torchaudio.load(tgt_path)
sentence = data["sentence"]
translation = data["translation"]
speaker_id = data["client_id"]
_id = data["path"].replace(".mp3", "")
return (
src_waveform,
src_sample_rate,
tgt_waveform,
tgt_sample_rate,
sentence,
translation,
speaker_id,
_id,
)
def __len__(self) -> int:
return len(self.s2s_data)
def process(args):
output_root = Path(args.output_root)
output_root.mkdir(exist_ok=True)
src_type = "audio" if args.use_audio_input else "fbank"
tgt_type = "spec" if args.target_type == "spec" else "unit"
output_tsv_dir = output_root / f"{src_type}2{tgt_type}"
output_tsv_dir.mkdir(exist_ok=True)
source_root = output_root / ("src_flac" if args.use_audio_input else "src_fbank80")
source_zip_path = output_root / f"{source_root.name}.zip"
if args.src_lang == "all":
src_lang_list = CoVoST.XX_EN_LANGUAGES[2]
else:
src_lang_list = [args.src_lang]
if source_zip_path.exists():
print(f"{source_zip_path} exists.")
else:
print("Extracting source audio/features...")
source_root.mkdir(exist_ok=True)
gcmvn_feature_list = []
for src_lang in src_lang_list:
covost_root = Path(args.covost_data_root) / src_lang
cvss_root = Path(args.cvss_data_root) / f"{src_lang}-en"
if not covost_root.is_dir():
raise NotADirectoryError(f"{covost_root} does not exist")
if not cvss_root.is_dir():
raise NotADirectoryError(f"{cvss_root} does not exist")
print(f"Extracting source audio/features for {src_lang}-en...")
for split in CoVoST.SPLITS:
dataset = CVSS_C(cvss_root, covost_root, split, src_lang, "en")
if args.use_audio_input:
for waveform, sample_rate, _, _, _, _, _, utt_id in tqdm(dataset):
src_sample_rate = 16_000
waveform, sample_rate = convert_waveform(
waveform,
sample_rate,
to_mono=True,
to_sample_rate=src_sample_rate,
)
sf.write(
(source_root / f"{utt_id}.flac").as_posix(),
waveform.T.numpy(),
sample_rate,
)
else:
for waveform, sample_rate, _, _, _, _, _, utt_id in tqdm(dataset):
src_sample_rate = 16_000
waveform, sample_rate = convert_waveform(
waveform,
sample_rate,
to_mono=True,
to_sample_rate=src_sample_rate,
)
features = extract_fbank_features(
waveform, sample_rate, source_root / f"{utt_id}.npy"
)
if split == "train" and args.cmvn_type == "global":
if len(gcmvn_feature_list) < args.gcmvn_max_num:
gcmvn_feature_list.append(features)
else:
break
if split == "train" and args.cmvn_type == "global":
# Estimate and save cmv
stats = cal_gcmvn_stats(gcmvn_feature_list)
with open(output_root / "gcmvn.npz", "wb") as f:
np.savez(f, mean=stats["mean"], std=stats["std"])
print("ZIPing source audios/features...")
create_zip(source_root, source_zip_path)
shutil.rmtree(source_root)
print("Fetching ZIP manifest...")
src_audio_paths, src_audio_lengths = get_zip_manifest(
source_zip_path,
is_audio=args.use_audio_input,
)
if args.target_type == "spec":
target_root = output_root / "tgt_logmelspec80"
target_zip_path = output_root / f"{target_root.name}.zip"
if target_zip_path.exists():
print(f"{target_zip_path} exists.")
else:
print("Extracting target features...")
target_root.mkdir(exist_ok=True)
for src_lang in src_lang_list:
covost_root = Path(args.covost_data_root) / src_lang
cvss_root = Path(args.cvss_data_root) / f"{src_lang}-en"
print(f"Extracting target audio/features for {src_lang}-en...")
for split in CoVoST.SPLITS:
dataset = CVSS_C(cvss_root, covost_root, split, src_lang, "en")
for _, _, waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
waveform, sample_rate = convert_waveform(
waveform,
sample_rate,
normalize_volume=args.normalize_volume,
to_sample_rate=args.target_sample_rate,
)
extract_logmel_spectrogram(
waveform,
sample_rate,
target_root / f"{utt_id}.npy",
win_length=args.win_length,
hop_length=args.hop_length,
n_fft=args.n_fft,
n_mels=args.n_mels,
f_min=args.f_min,
f_max=args.f_max,
)
print("ZIPing target features...")
create_zip(target_root, target_zip_path)
shutil.rmtree(target_root)
tgt_audio_paths, tgt_audio_lengths = get_zip_manifest(target_zip_path)
# Generate TSV manifest
print("Generating manifest...")
for split in CoVoST.SPLITS:
manifest = {c: [] for c in MANIFEST_COLUMNS}
for src_lang in src_lang_list:
covost_root = Path(args.covost_data_root) / src_lang
cvss_root = Path(args.cvss_data_root) / f"{src_lang}-en"
dataset = CVSS_C(cvss_root, covost_root, split, src_lang, "en")
for _, _, _, _, src_utt, tgt_utt, _, utt_id in tqdm(dataset):
manifest["id"].append(utt_id)
manifest["src_audio"].append(src_audio_paths[utt_id])
manifest["src_n_frames"].append(src_audio_lengths[utt_id])
manifest["src_text"].append(src_utt)
manifest["tgt_text"].append(tgt_utt)
manifest["tgt_audio"].append(tgt_audio_paths[utt_id])
manifest["tgt_n_frames"].append(tgt_audio_lengths[utt_id])
df = pd.DataFrame.from_dict(manifest)
save_df_to_tsv(df, output_tsv_dir / f"{split}.tsv")
# Generate config YAML
win_len_t = args.win_length / args.target_sample_rate
hop_len_t = args.hop_length / args.target_sample_rate
extra = {
"features": {
"type": "spectrogram+melscale+log",
"sample_rate": args.target_sample_rate,
"eps": 1e-5,
"n_mels": args.n_mels,
"n_fft": args.n_fft,
"window_fn": "hann",
"win_length": args.win_length,
"hop_length": args.hop_length,
"win_len_t": win_len_t,
"hop_len_t": hop_len_t,
"f_min": args.f_min,
"f_max": args.f_max,
"n_stft": args.n_fft // 2 + 1,
}
}
if args.use_audio_input:
extra["use_audio_input"] = True
gen_config_yaml(
output_tsv_dir,
specaugment_policy=None,
feature_transform=["utterance_cmvn", "delta_deltas"],
extra=extra,
)
else:
gen_config_yaml(
output_tsv_dir,
specaugment_policy="lb",
feature_transform=["utterance_cmvn", "delta_deltas"],
extra=extra,
)
else:
# Generate TSV manifest
print("Generating manifest...")
for split in CoVoST.SPLITS:
manifest = {c: [] for c in MANIFEST_COLUMNS}
for src_lang in src_lang_list:
covost_root = Path(args.covost_data_root) / src_lang
cvss_root = Path(args.cvss_data_root) / f"{src_lang}-en"
dataset = CVSS_C(cvss_root, covost_root, split, src_lang, "en")
target_unit_data = load_units(cvss_root / f"{split}.{args.unit_type}")
for _, _, _, _, src_utt, tgt_utt, _, utt_id in tqdm(dataset):
manifest["id"].append(utt_id)
manifest["src_audio"].append(src_audio_paths[utt_id])
manifest["src_n_frames"].append(src_audio_lengths[utt_id])
manifest["src_text"].append(src_utt)
manifest["tgt_text"].append(tgt_utt)
target_units = process_units(
target_unit_data[utt_id + ".mp3.wav"], args.reduce_unit
)
manifest["tgt_audio"].append(" ".join(target_units))
manifest["tgt_n_frames"].append(len(target_units))
df = pd.DataFrame.from_dict(manifest)
save_df_to_tsv(df, output_tsv_dir / f"{split}.tsv")
# Generate config YAML
if args.use_audio_input:
gen_config_yaml(
output_tsv_dir,
specaugment_policy=None,
feature_transform=["utterance_cmvn"],
vocoder_type="code_hifigan",
vocoder_checkpoint=args.vocoder_checkpoint,
vocoder_cfg=args.vocoder_cfg,
extra={"use_audio_input": True},
)
else:
if args.cmvn_type == "global":
gen_config_yaml_gcmvn(
output_tsv_dir,
yaml_filename="config_gcmvn.yaml",
specaugment_policy="lb",
cmvn_type=args.cmvn_type,
gcmvn_path=(
output_root / "gcmvn.npz"
if args.cmvn_type == "global"
else None
),
vocoder_type="code_hifigan",
vocoder_checkpoint=args.vocoder_checkpoint,
vocoder_cfg=args.vocoder_cfg,
)
else:
gen_config_yaml(
output_tsv_dir,
specaugment_policy="lb",
feature_transform=["utterance_cmvn"],
vocoder_type="code_hifigan",
vocoder_checkpoint=args.vocoder_checkpoint,
vocoder_cfg=args.vocoder_cfg,
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--cvss-data-root",
required=True,
type=str,
help="data root of cvss-c",
)
parser.add_argument(
"--covost-data-root",
required=True,
type=str,
help="data root of covost2",
)
parser.add_argument(
"--output-root",
required=True,
type=str,
help="output root",
)
parser.add_argument("--use-audio-input", action="store_true")
parser.add_argument(
"--target-type",
default="spec",
choices=["unit", "spec"],
help="type of target speech",
)
parser.add_argument(
"--src-lang",
default="all",
choices=[
"fr",
"de",
"es",
"ca",
"it",
"ru",
"zh-CN",
"pt",
"fa",
"et",
"mn",
"nl",
"tr",
"ar",
"sv-SE",
"lv",
"sl",
"ta",
"ja",
"id",
"cy",
"all",
],
help="filter source language",
)
parser.add_argument(
"--cmvn-type",
default="global",
choices=["global", "utterance"],
help="The type of cepstral mean and variance normalization",
)
parser.add_argument(
"--gcmvn-max-num",
default=9999999,
type=int,
help="Maximum number of sentences to use to estimate global mean and "
"variance",
)
# s2spect args
parser.add_argument("--win-length", type=int, default=1024)
parser.add_argument("--hop-length", type=int, default=256)
parser.add_argument("--n-fft", type=int, default=1024)
parser.add_argument("--n-mels", type=int, default=80)
parser.add_argument("--f-min", type=int, default=20)
parser.add_argument("--f-max", type=int, default=8000)
parser.add_argument("--target-sample-rate", type=int, default=22050)
parser.add_argument("--normalize-volume", "-n", action="store_true")
# s2ut args
parser.add_argument(
"--unit-type",
default="km100",
choices=["km100", "km1000", "sn", "bip"],
help="type of target units; km: kmeans, sn: speaker normalization (Lee et al., 2022b), bip: biliteral perturbation (Huang et al., 2023).",
)
parser.add_argument(
"--reduce-unit",
action="store_true",
help="reduce a target unit sequence to a unique unit sequence, i.e. '1 1 1 2 2' -> '1 2'",
)
parser.add_argument(
"--vocoder-checkpoint", default=None, type=str, help="vocoder checkpoint"
)
parser.add_argument(
"--vocoder-cfg", default=None, type=str, help="vocoder config file"
)
args = parser.parse_args()
process(args)
if __name__ == "__main__":
main()