-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathprep_cvss_c_multitask_data.py
126 lines (112 loc) · 4.39 KB
/
prep_cvss_c_multitask_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import tqdm
import argparse
import pandas as pd
import sentencepiece as spm
from pathlib import Path
from tempfile import NamedTemporaryFile
import sys
import os
import re
dir_path = os.path.dirname(os.path.realpath(__file__))
parent_dir_path = os.path.abspath(os.path.join(dir_path, os.pardir))
sys.path.insert(0, parent_dir_path)
from examples.speech_to_text.data_utils import (
load_df_from_tsv,
save_df_to_tsv,
gen_vocab,
)
from examples.speech_synthesis.data_utils import ipa_phonemize
MANIFEST_COLUMNS = ["id", "tgt_text"]
SPLITS = ["train", "dev", "test"]
def learn_spm_vocab(args, train_text):
with NamedTemporaryFile(mode="w") as f:
for t in train_text:
f.write(t + "\n")
gen_vocab(
Path(f.name),
Path(args.output_dir).absolute() / f"spm_{args.vocab_type}_{args.lang}",
args.vocab_type,
args.vocab_size,
)
def process(args):
output_dir = Path(args.output_dir).absolute()
output_dir.mkdir(exist_ok=True)
if args.vocab_type in ["char", "unigram"]:
train_text = []
df = load_df_from_tsv(Path(args.data_dir).absolute() / "train.tsv")
data = list(df.T.to_dict().values())
for item in data:
if args.is_src_text:
item["src_text"] = re.sub(r"[^\w\s]", "", item["src_text"].lower())
train_text.append(item["src_text"])
else:
item["tgt_text"] = re.sub(r"[^\w\s]", "", item["tgt_text"].lower())
train_text.append(item["tgt_text"])
learn_spm_vocab(args, train_text)
sp = spm.SentencePieceProcessor(
model_file=os.path.join(
output_dir, f"spm_{args.vocab_type}_{args.lang}.model"
)
)
for split in SPLITS:
df = load_df_from_tsv(Path(args.data_dir).absolute() / f"{split}.tsv")
data = list(df.T.to_dict().values())
manifest = {c: [] for c in MANIFEST_COLUMNS}
for item in data:
manifest["id"].append(item["id"])
if args.is_src_text:
item["src_text"] = re.sub(r"[^\w\s]", "", item["src_text"].lower())
manifest["tgt_text"].append(
" ".join(sp.encode(item["src_text"], out_type=str))
)
else:
item["tgt_text"] = re.sub(r"[^\w\s]", "", item["tgt_text"].lower())
manifest["tgt_text"].append(
" ".join(sp.encode(item["tgt_text"], out_type=str))
)
df = pd.DataFrame.from_dict(manifest)
save_df_to_tsv(df, output_dir / f"{split}.tsv")
else:
for split in SPLITS:
df = load_df_from_tsv(Path(args.data_dir).absolute() / f"{split}.tsv")
data = list(df.T.to_dict().values())
manifest = {c: [] for c in MANIFEST_COLUMNS}
for item in tqdm.tqdm(data):
manifest["id"].append(item["id"])
if args.is_src_text:
item["src_text"] = re.sub(r"[^\w\s]", "", item["src_text"].lower())
manifest["tgt_text"].append(
ipa_phonemize(
item["src_text"], lang=args.lang, use_g2p=args.use_g2p
)
)
else:
item["tgt_text"] = re.sub(r"[^\w\s]", "", item["tgt_text"].lower())
manifest["tgt_text"].append(
ipa_phonemize(
item["tgt_text"], lang=args.lang, use_g2p=args.use_g2p
)
)
df = pd.DataFrame.from_dict(manifest)
save_df_to_tsv(df, output_dir / f"{split}.tsv")
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data-dir", type=str, required=True)
parser.add_argument("--output-dir", type=str, required=True)
parser.add_argument("--lang", type=str, required=True)
parser.add_argument(
"--is-src-text",
action="store_true",
)
parser.add_argument(
"--vocab-type",
choices=["char", "phoneme", "unigram"],
required=True,
)
parser.add_argument("--vocab-size", default=6000, type=int)
parser.add_argument("--use-g2p", action="store_true")
args = parser.parse_args()
process(args)
if __name__ == "__main__":
main()