-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathquantize_with_kmeans.py
153 lines (136 loc) · 4.69 KB
/
quantize_with_kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
import os
import tqdm
import random
import numpy as np
import joblib
from utils import (
get_audio_files,
)
from hubert_feature_reader import HubertFeatureReader
def get_logger():
log_format = "[%(asctime)s] [%(levelname)s]: %(message)s"
logging.basicConfig(format=log_format, level=logging.INFO)
logger = logging.getLogger(__name__)
return logger
def get_parser():
parser = argparse.ArgumentParser(
description="Quantize using K-means clustering over acoustic features."
)
parser.add_argument(
"--feature_type",
type=str,
choices=["logmel", "hubert", "w2v2", "cpc"],
default=None,
required=True,
help="Acoustic feature type",
)
parser.add_argument(
"--acoustic_model_path", type=str, help="Pretrained acoustic model checkpoint"
)
parser.add_argument(
"--layer",
type=int,
help="The layer of the pretrained model to extract features from",
default=-1,
)
parser.add_argument(
"--kmeans_model_path",
type=str,
required=True,
help="K-means model file path to use for inference",
)
parser.add_argument(
"--features_path",
type=str,
default=None,
help="Features file path. You don't need to enter acoustic model details if you have dumped features",
)
parser.add_argument(
"--manifest_path",
type=str,
default=None,
help="Manifest file containing the root dir and file names",
)
parser.add_argument(
"--out_quantized_file_path",
required=True,
type=str,
help="File path of quantized output.",
)
parser.add_argument(
"--extension", type=str, default=".flac", help="Features file path"
)
parser.add_argument(
"--channel_id",
choices=["1", "2"],
help="The audio channel to extract the units in case of stereo file.",
default=None,
)
parser.add_argument(
"--hide-fname", action="store_true", help="Hide file names in the output file."
)
return parser
def get_feature_iterator(
feature_type, checkpoint_path, layer, manifest_path, sample_pct, channel_id
):
feature_reader_cls = HubertFeatureReader
with open(manifest_path, "r") as fp:
lines = fp.read().split("\n")
root = lines.pop(0).strip()
file_path_list = [
os.path.join(root, line.split("\t")[0]) for line in lines if len(line) > 0
]
if sample_pct < 1.0:
file_path_list = random.sample(
file_path_list, int(sample_pct * len(file_path_list))
)
num_files = len(file_path_list)
reader = feature_reader_cls(checkpoint_path=checkpoint_path, layer=layer)
def iterate():
for file_path in file_path_list:
feats = reader.get_feats(file_path, channel_id=channel_id)
yield feats.cpu().numpy()
return iterate, num_files
def main(args, logger):
# feature iterator
generator, num_files = get_feature_iterator(
feature_type=args.feature_type,
checkpoint_path=args.acoustic_model_path,
layer=args.layer,
manifest_path=args.manifest_path,
sample_pct=1.0,
channel_id=int(args.channel_id) if args.channel_id else None,
)
iterator = generator()
# K-means model
logger.info(f"Loading K-means model from {args.kmeans_model_path} ...")
kmeans_model = joblib.load(open(args.kmeans_model_path, "rb"))
kmeans_model.verbose = False
_, fnames, _ = get_audio_files(args.manifest_path)
os.makedirs(os.path.dirname(args.out_quantized_file_path), exist_ok=True)
print(f"Writing quantized predictions to {args.out_quantized_file_path}")
with open(args.out_quantized_file_path, "w") as fout:
for i, feats in tqdm.tqdm(enumerate(iterator), total=num_files):
pred = kmeans_model.predict(feats)
pred_str = " ".join(str(p) for p in pred)
base_fname = os.path.basename(fnames[i]).rstrip(
"." + args.extension.lstrip(".")
)
if args.channel_id is not None:
base_fname = base_fname + f"-channel{args.channel_id}"
if not args.hide_fname:
fout.write(f"{base_fname}|{pred_str}\n")
else:
fout.write(f"{pred_str}\n")
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
logger = get_logger()
logger.info(args)
main(args, logger)