|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "bd8840d7", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Temporal correlation analysis between discrete point events and times eries data" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": null, |
| 14 | + "id": "aa829baf-0bc9-4aba-b0a5-4b7bee0a7b96", |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "import numpy as np\n", |
| 19 | + "import pandas as pd\n", |
| 20 | + "import matplotlib.pyplot as plt\n", |
| 21 | + "from sklearn.metrics import pairwise_distances\n", |
| 22 | + "\n", |
| 23 | + "import os, sys\n", |
| 24 | + "\n", |
| 25 | + "cwd = os.getcwd()\n", |
| 26 | + "frameworkDir = os.path.abspath(os.path.join(cwd, os.pardir, 'src'))\n", |
| 27 | + "sys.path.append(frameworkDir)\n", |
| 28 | + "\n", |
| 29 | + "from dackar.utils.num import t_score\n", |
| 30 | + "\n", |
| 31 | + "np.random.seed(6)" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "markdown", |
| 36 | + "id": "e04a959f", |
| 37 | + "metadata": {}, |
| 38 | + "source": [ |
| 39 | + "## Generate example time series" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": null, |
| 45 | + "id": "5bcc16ab-88f8-493f-9974-20b9f7469a01", |
| 46 | + "metadata": {}, |
| 47 | + "outputs": [], |
| 48 | + "source": [ |
| 49 | + "def generateSeries(maxT, t1, t2, tsql, sqlDur):\n", |
| 50 | + " N = 5000\n", |
| 51 | + " N_spk = 7\n", |
| 52 | + "\n", |
| 53 | + " cpu = np.zeros(N)\n", |
| 54 | + " t = np.linspace(0,maxT,N)\n", |
| 55 | + " noise_base = np.random.normal(0,0.005,N)\n", |
| 56 | + "\n", |
| 57 | + " spikesLoc = np.random.randint(low=0, high=N, size=N_spk)\n", |
| 58 | + " spikesDT = np.random.randint(low=10, high=20, size=N_spk)\n", |
| 59 | + " \n", |
| 60 | + " difference_array_1 = np.absolute(t-t1)\n", |
| 61 | + " index1 = difference_array_1.argmin()\n", |
| 62 | + "\n", |
| 63 | + " difference_array_2 = np.absolute(t-t2)\n", |
| 64 | + " index2 = difference_array_2.argmin()\n", |
| 65 | + " \n", |
| 66 | + " cpu[0:index1] = .3\n", |
| 67 | + " cpu[index2:N] = .3\n", |
| 68 | + " cpu[index1:index2] = .9\n", |
| 69 | + " cpu = cpu + noise_base\n", |
| 70 | + " \n", |
| 71 | + " # random spikes\n", |
| 72 | + " for i in range(N_spk):\n", |
| 73 | + " noise_spike = np.absolute(np.random.normal(0,0.04, spikesDT[i]))\n", |
| 74 | + " for dt in range(spikesDT[i]):\n", |
| 75 | + " cpu[spikesLoc[i] + dt] = cpu[spikesLoc[i] + dt] + noise_spike[dt]\n", |
| 76 | + " \n", |
| 77 | + " # SQL spikes\n", |
| 78 | + " noiseSQL = np.absolute(np.random.normal(0,0.08, sqlDur))\n", |
| 79 | + " for dt in range(sqlDur):\n", |
| 80 | + " cpu[tsql + dt] = cpu[tsql + dt] + noiseSQL[dt]\n", |
| 81 | + "\n", |
| 82 | + " print('Anomaly ratio: total', (index2-index1 + np.sum(spikesDT[i]))/N)\n", |
| 83 | + " print('Anomaly ratio: large spikes:', (index2-index1)/N)\n", |
| 84 | + " print('Anomaly ratio: small spikes', (np.sum(spikesDT[i]))/N)\n", |
| 85 | + " \n", |
| 86 | + " return t,cpu" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "markdown", |
| 91 | + "id": "62b349dd", |
| 92 | + "metadata": {}, |
| 93 | + "source": [ |
| 94 | + "## Generate temporal location of a set of events\n", |
| 95 | + "True positive events:\n", |
| 96 | + "* E1: located right before rump-up\n", |
| 97 | + "* E2: located right after rump-up\n", |
| 98 | + "* E3: located right before rump-down\n", |
| 99 | + "* E4: located right after rump-down\n", |
| 100 | + "* E5: located in the middle of squared pulse\n", |
| 101 | + "True negative events:\n", |
| 102 | + "* EA: located before the squared pulse \n", |
| 103 | + "* EB: located after the squared pulse \n", |
| 104 | + "* EC: located after the squared pulse " |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": null, |
| 110 | + "id": "f97c5cc0-b2e8-428f-bc56-787b664beb2d", |
| 111 | + "metadata": {}, |
| 112 | + "outputs": [], |
| 113 | + "source": [ |
| 114 | + "maxT = 1000\n", |
| 115 | + "t1 = 300\n", |
| 116 | + "t2 = 370\n", |
| 117 | + "tsql = 650\n", |
| 118 | + "sqlDur = 50\n", |
| 119 | + "t, cpu = generateSeries(maxT, t1, t2, tsql, sqlDur)\n", |
| 120 | + "\n", |
| 121 | + "difference_array_1 = np.absolute(t-t1)\n", |
| 122 | + "loc1 = difference_array_1.argmin()\n", |
| 123 | + "difference_array_2 = np.absolute(t-t2)\n", |
| 124 | + "loc2 = difference_array_2.argmin()\n", |
| 125 | + "\n", |
| 126 | + "# True negative\n", |
| 127 | + "E1_loc = loc1 - 10\n", |
| 128 | + "E2_loc = loc1 + 10\n", |
| 129 | + "E3_loc = loc2 - 10\n", |
| 130 | + "E4_loc = loc2 + 10\n", |
| 131 | + "E5_loc = loc1 + 35\n", |
| 132 | + "\n", |
| 133 | + "# True positive\n", |
| 134 | + "EA = 200\n", |
| 135 | + "difference_array_0 = np.absolute(t-EA)\n", |
| 136 | + "EA_loc = difference_array_0.argmin()\n", |
| 137 | + "\n", |
| 138 | + "EB = 500\n", |
| 139 | + "difference_array_0 = np.absolute(t-EB)\n", |
| 140 | + "EB_loc = difference_array_0.argmin()\n", |
| 141 | + "\n", |
| 142 | + "EC = 900\n", |
| 143 | + "difference_array_0 = np.absolute(t-EC)\n", |
| 144 | + "EC_loc = difference_array_0.argmin()" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": null, |
| 150 | + "id": "8a746b18-8458-4996-a8b3-b9d48800283b", |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [], |
| 153 | + "source": [ |
| 154 | + "plt.close()\n", |
| 155 | + "fig, ax = plt.subplots()\n", |
| 156 | + "ax.plot(t,cpu)\n", |
| 157 | + "\n", |
| 158 | + "plt.xlabel('time [s]')\n", |
| 159 | + "plt.ylabel('cpu load [%]')\n", |
| 160 | + "plt.show()" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "code", |
| 165 | + "execution_count": null, |
| 166 | + "id": "849c098d-822a-450b-95fc-85f88b708273", |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "windowSize = 100\n", |
| 171 | + "omegaSize = 500\n", |
| 172 | + "alpha = 0.05\n", |
| 173 | + "N_iterations = 100\n", |
| 174 | + "alpha_value = 0.0736" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": null, |
| 180 | + "id": "610b02fa-7f9e-43f7-bdaf-d0582e3d17b2", |
| 181 | + "metadata": {}, |
| 182 | + "outputs": [], |
| 183 | + "source": [ |
| 184 | + "t_score.event2TStest(E_loc=E1_loc, TS=cpu, iterations=N_iterations, alphaTest=alpha, alphaOmegaset=alpha_value, windowSize=windowSize, omegaSize=omegaSize)" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "code", |
| 189 | + "execution_count": null, |
| 190 | + "id": "540ee985-05c4-4c9a-bcfc-16490917b75e", |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [], |
| 193 | + "source": [ |
| 194 | + "t_score.event2TStest(E_loc=E2_loc, TS=cpu, iterations=N_iterations, alphaTest=alpha, alphaOmegaset=alpha_value, windowSize=windowSize, omegaSize=omegaSize)" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "code", |
| 199 | + "execution_count": null, |
| 200 | + "id": "74920e98-40d6-4719-a5f4-c0412abff925", |
| 201 | + "metadata": {}, |
| 202 | + "outputs": [], |
| 203 | + "source": [ |
| 204 | + "t_score.event2TStest(E_loc=E3_loc, TS=cpu, iterations=N_iterations, alphaTest=alpha, alphaOmegaset=alpha_value, windowSize=windowSize, omegaSize=omegaSize)" |
| 205 | + ] |
| 206 | + }, |
| 207 | + { |
| 208 | + "cell_type": "code", |
| 209 | + "execution_count": null, |
| 210 | + "id": "16259e81-9b24-4b7a-9b84-4baf9d6a9890", |
| 211 | + "metadata": {}, |
| 212 | + "outputs": [], |
| 213 | + "source": [ |
| 214 | + "t_score.event2TStest(E_loc=E4_loc, TS=cpu, iterations=N_iterations, alphaTest=alpha, alphaOmegaset=alpha_value, windowSize=windowSize, omegaSize=omegaSize)" |
| 215 | + ] |
| 216 | + }, |
| 217 | + { |
| 218 | + "cell_type": "code", |
| 219 | + "execution_count": null, |
| 220 | + "id": "93b07cf3-81db-43bb-ae04-0f182a062446", |
| 221 | + "metadata": {}, |
| 222 | + "outputs": [], |
| 223 | + "source": [ |
| 224 | + "t_score.event2TStest(E_loc=E5_loc, TS=cpu, iterations=N_iterations, alphaTest=alpha, alphaOmegaset=alpha_value, windowSize=windowSize, omegaSize=omegaSize)" |
| 225 | + ] |
| 226 | + }, |
| 227 | + { |
| 228 | + "cell_type": "code", |
| 229 | + "execution_count": null, |
| 230 | + "id": "9c25e27d-d531-48fb-bac8-aa9ace3ed353", |
| 231 | + "metadata": {}, |
| 232 | + "outputs": [], |
| 233 | + "source": [ |
| 234 | + "t_score.event2TStest(E_loc=EA_loc, TS=cpu, iterations=N_iterations, alphaTest=alpha, alphaOmegaset=alpha_value, windowSize=windowSize, omegaSize=omegaSize)" |
| 235 | + ] |
| 236 | + }, |
| 237 | + { |
| 238 | + "cell_type": "code", |
| 239 | + "execution_count": null, |
| 240 | + "id": "9b8abed4-a57c-41cc-a44b-f5106c2b3431", |
| 241 | + "metadata": {}, |
| 242 | + "outputs": [], |
| 243 | + "source": [ |
| 244 | + "t_score.event2TStest(E_loc=EB_loc, TS=cpu, iterations=N_iterations, alphaTest=alpha, alphaOmegaset=alpha_value, windowSize=windowSize, omegaSize=omegaSize)" |
| 245 | + ] |
| 246 | + }, |
| 247 | + { |
| 248 | + "cell_type": "code", |
| 249 | + "execution_count": null, |
| 250 | + "id": "b33ac31f-953e-4b07-bb36-62726e9540ff", |
| 251 | + "metadata": {}, |
| 252 | + "outputs": [], |
| 253 | + "source": [ |
| 254 | + "t_score.event2TStest(E_loc=EC_loc, TS=cpu, iterations=N_iterations, alphaTest=alpha, alphaOmegaset=alpha_value, windowSize=windowSize, omegaSize=omegaSize)" |
| 255 | + ] |
| 256 | + } |
| 257 | + ], |
| 258 | + "metadata": { |
| 259 | + "kernelspec": { |
| 260 | + "display_name": "dackar_libs", |
| 261 | + "language": "python", |
| 262 | + "name": "python3" |
| 263 | + }, |
| 264 | + "language_info": { |
| 265 | + "codemirror_mode": { |
| 266 | + "name": "ipython", |
| 267 | + "version": 3 |
| 268 | + }, |
| 269 | + "file_extension": ".py", |
| 270 | + "mimetype": "text/x-python", |
| 271 | + "name": "python", |
| 272 | + "nbconvert_exporter": "python", |
| 273 | + "pygments_lexer": "ipython3", |
| 274 | + "version": "3.11.8" |
| 275 | + } |
| 276 | + }, |
| 277 | + "nbformat": 4, |
| 278 | + "nbformat_minor": 5 |
| 279 | +} |
0 commit comments