Skip to content

Commit ac88058

Browse files
authored
Merge pull request #31547 from tanoret/pr_subchannel_htc
Expanding/Improving Heat Transfer Models in Subchannel
2 parents 2a3f315 + 7d50165 commit ac88058

32 files changed

+976
-225
lines changed

modules/combined/test/tests/subchannel_thm_coupling/subchannel.i

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -109,6 +109,7 @@ heated_length = 1.0
109109
verbose_multiapps = true
110110
verbose_subchannel = false
111111
interpolation_scheme = 'upwind'
112+
pin_htc_correlation = 'gnielinski'
112113
[]
113114

114115
[ICs]

modules/subchannel/doc/content/bib/subchannel.bib

Lines changed: 25 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -325,3 +325,28 @@ @article{Marinelli
325325
year = {1972},
326326
author = {Marinelli, V and Pastori, L and Kjellen, B}
327327
}
328+
329+
@book{incropera1990,
330+
title={Fundamentals of heat and mass transfer},
331+
author={Incropera, Frank P and DeWitt, David P and Bergman, Theodore L and Lavine, Adrienne S and others},
332+
volume={1072},
333+
year={1990},
334+
publisher={New York John Wiley \& Sons, Inc.}
335+
}
336+
337+
@techreport{kazimi1976,
338+
title={Clinch River breeder reactor plant. Heat transfer correlation for analysis of CRBRP assemblies},
339+
author={Kazimi, MS and Carelli, MD},
340+
year={1976},
341+
institution={Westinghouse Electric Corp., Madison, PA (United States). Advanced Reactors Div.}
342+
}
343+
344+
@article{angelucci2018,
345+
title={Experimental campaign on the HLM loop NACIE-UP with instrumented wire-spaced fuel pin simulator},
346+
author={Angelucci, Morena and Di Piazza, Ivan and Martelli, Daniele},
347+
journal={Nuclear Engineering and Design},
348+
volume={332},
349+
pages={137--146},
350+
year={2018},
351+
publisher={Elsevier}
352+
}

modules/subchannel/doc/content/source/problems/TriSubChannel1PhaseProblem.md

Lines changed: 153 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,159 @@ It inherits from the base class : `SubChannel1PhaseProblem`. Information regardi
1111

1212
Pin surface temperature is calculated at the end of the solve, if there is a PinMesh using Dittus Boelter correlation.
1313

14+
## Channel-to-Pin and Channel-to-Duct Heat Transfer Modeling
15+
16+
The pin surface temperature are computed via the heat transfer coefficient as follows:
17+
18+
\begin{equation}
19+
T_{s,\text{pin}}(z) = \frac{1}{N} \sum_{sc=1}^N T_{bulk,sc}(z) + \frac{q'_{\text{pin}}(z)}{\pi D_{\text{pin}}(z) h_{sc}(z)},
20+
\end{equation}
21+
22+
where:
23+
24+
- $T_{s,\text{pin}}(z)$ is the surface temperature for the pin at a height $z$
25+
- $N$ is the number of subchannel neighboring the pin
26+
- $T_{bulk,sc}(z)$ is the bulk temperature for a subchannel $sc$ neighboring the pin at a height $z$
27+
- $q'_{\text{pin}}(z)$ is the linear heat generation rate for the pin at a height $z$
28+
- $D_{\text{pin}}(z)$ is the pin diameter at a height $z$
29+
- $h_{sc}(z)$ is the heat exchange coefficient for a subchannel $sc$ neighboring the pin at a height $z$
30+
31+
32+
For the duct, the duct surface temperature is defined as follows:
33+
34+
\begin{equation}
35+
T_{s,d}(z) = T_{bulk,d}(z) + \frac{q''_d(z)}{h_d(z)},
36+
\end{equation}
37+
38+
where:
39+
- $T_{s,d}(z)$ is the duct surface temperature at a height $z$
40+
- $T_{bulk,d}(z)$ is the bulk temperature of the subchannel next to the duct node $d$
41+
- $q''_d(z)$ is the heat flux at the duct at a height $z$
42+
- $h_d(z)$ is the heat exchange coefficient for the subchannel next to the duct node at a height $z$
43+
44+
In both cases, the heat exchange coefficients are computed using the Nusselt number (Nu) as follows:
45+
46+
\begin{equation}
47+
h = \frac{\text{Nu} \times k}{D_h}
48+
\end{equation}
49+
50+
where:
51+
52+
- $k$ is the thermal conductivity of the subchannel neighboring the structure
53+
- $D_h$ is the hydraulics diameter of the subchannel neighboring the structure
54+
55+
56+
The following correlations have been implemented for the Nusselt number
57+
which can be selected via the [!param](/Problem/TriSubChannel1PhaseProblem/pin_htc_correlation) parameter
58+
for the pin and the [!param](/Problem/TriSubChannel1PhaseProblem/duct_htc_correlation) for the duct, respectively.
59+
60+
### General Expression for the Nusselt number
61+
62+
The bounding laminar and turbulent Reynolds numbers for the turbulent transition are defined as follows:
63+
64+
\begin{equation}
65+
Re_L = 300 \times 10^{1.7 \times (P/D_{\text{pin}} - 1.0)}
66+
\end{equation}
67+
68+
\begin{equation}
69+
Re_T = 10^4 \times 10^{1.7 \times (P/D_{\text{pin}} - 1.0)}
70+
\end{equation}
71+
72+
where:
73+
74+
- P is the pitch
75+
- D$_{\text{pin}}$ is the pin diameter
76+
77+
78+
The flow is laminar if $Re \leq Re_L$, turbulent if $Re \geq Re_T$, and in the transition regime if it lies in between.
79+
The modeling of each regime is explained below.
80+
81+
#### Laminar Nusselt Number
82+
83+
The following relation is used depending on the subchannel type [!cite](Todreas):
84+
85+
\begin{equation}
86+
\text{Nu}_{\text{laminar}} =
87+
\begin{cases}
88+
4.0 & \text{if subchannel is CENTER} \\
89+
3.7 & \text{if subchannel is EDGE} \\
90+
3.3 & \text{if subchannel is CORNER}
91+
\end{cases}
92+
\end{equation}
93+
94+
### Dittus-Boelter Correlation for Turbulent Nusselt Number
95+
96+
The Dittus-Boelter equation [!cite](incropera1990) is implemented as follows:
97+
98+
\begin{equation}
99+
\text{Nu}_{\text{turbulent}} = 0.023 \times Re^{0.8} \times Pr^{0.4},
100+
\end{equation}
101+
102+
where:
103+
104+
- $Nu$: Nusselt number
105+
- $Re$: Reynolds number
106+
- $Pr$: Prandtl number
107+
108+
109+
### Gnielinski Correlation for Turbulent Nusselt Number
110+
111+
A modified Gnielinski correlation for low Prandtl numbers is used for calculating the Nusselt number for transitional and turbulent flows. The baseline correlation is taken from Angelucci's work [!cite](angelucci2018). The modified correlation reads as follows:
112+
113+
\begin{equation}
114+
\text{Nu}_{\text{turbulent}} = \frac{f/8.0 \times (Re - 1000) \times (Pr + 0.01)}{1 + 12.7 \times \sqrt{f/8.0} \times \left( (Pr + 0.01)^{2/3} - 1 \right)},
115+
\end{equation}
116+
117+
where:
118+
119+
- $Nu$: Nusselt number
120+
- $Re$: Reynolds number
121+
- $Pr$: Prandtl number
122+
- $f$: Darcy friction factor
123+
124+
125+
The key modification in the correlation is the addition of $0.01$ to the Prandtl number.
126+
This modification retains predictions within experimental uncertainty at high $Pr$ numbers but enables the correlation to be used at low $Pr$ numbers.
127+
With this modification, at low $Pr$ numbers (approximately for $Pr < 0.01$), one can expect behavior similar to that of the Lubarsky and Kaufman correlation from this modified Gnielinski correlation.
128+
129+
### Kazimi-Carelli Correlation for Turbulent Nusselt Number
130+
131+
The Kazimi-Carelli correlation [!cite](kazimi1976) is used for calculating the Nusselt number in rod bundles, considering the geometry of the bundle.
132+
133+
\begin{equation}
134+
\text{Nu}_{\text{turbulent}} = 4.0 + 0.33 \times \left( \frac{p}{D} \right)^{3.8} \times \left( \frac{Pe}{100} \right)^{0.86} + 0.16 \times \left( \frac{p}{D} \right)^{5},
135+
\end{equation}
136+
137+
where:
138+
139+
- $Nu$: Nusselt number
140+
- $p$: Pitch, the center-to-center distance between adjacent rods
141+
- $D$: Diameter of the rod
142+
- $\frac{p}{D}$: Pitch-to-diameter ratio
143+
- $Pe$: Peclet number ($Pe = Re \times Pr$)
144+
- $Re$: Reynolds number
145+
- $Pr$: Prandtl number
146+
147+
148+
!alert note
149+
The Kazimi-Carelli correlation is not currently implemented for computing the duct surface temperature.
150+
The code will error out if 'Kazimi-Carelli' is used in [!param](/Problem/TriSubChannel1PhaseProblem/duct_htc_correlation).
151+
152+
### Transition Regime
153+
154+
A linear interpolation weight is defined as follows:
155+
156+
\begin{equation}
157+
w_T = \frac{Re - Re_L}{Re_T - Re_L}.
158+
\end{equation}
159+
160+
Then, the Nusselt number in the transition regime is defined by linearly interpolating the laminar Nusselt number and the turbulent one,
161+
which is defined with the chosen correlation for the pin or duct, as follows:
162+
163+
\begin{equation}
164+
\text{Nu}_{\text{transition}} = w_T \times \text{Nu}_{\text{turbulent}} + (1.0 - w_T) \times \text{Nu}_{\text{laminar}}.
165+
\end{equation}
166+
14167
## Example Input File Syntax
15168

16169
!listing /test/tests/problems/Lead-LBE-19pin/test_LEAD-19pin.i block=Problem language=moose

modules/subchannel/examples/MultiApp/fuel_assembly.i

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -151,6 +151,10 @@ duct_inside = '${fparse duct_outside - 2 * duct_thickness}'
151151
P_tol = 1.0e-4
152152
T_tol = 1.0e-8
153153

154+
# Heat Transfer Correlations
155+
pin_htc_correlation = 'gnielinski'
156+
duct_htc_correlation = 'gnielinski'
157+
154158
# Output
155159
compute_density = true
156160
compute_viscosity = true

0 commit comments

Comments
 (0)