-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathdistillation.py
68 lines (55 loc) · 2.89 KB
/
distillation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import argparse
from solver_distillation import solver_in_domain
from utils import set_seed
from solver_fm_distillation_grad import solver_fm_distillation_grad
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0)
# storage
parser.add_argument('--data_root', type=str, default='/home/ICT2000/dchang/TAC_project/data')
parser.add_argument('--ckpt_path', type=str, default='/home/ICT2000/dchang/TAC_project/BP4D_Face/checkpoints_fm_resnet')
# data
parser.add_argument('--data', type=str, default='BP4D', choices=['BP4D', 'DISFA'])
parser.add_argument('--fold', type=str, default='0', choices=['0', '1', '2', '3', '4','all'])
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--image_size', type=int, default=256)
parser.add_argument('--crop_size', type=int, default=224)
parser.add_argument('--num_labels', type=int, default=12)
parser.add_argument('--sigma', type=float, default=10.0)
# model
parser.add_argument('--teacher_model_name', type=str, default='emotionnet_mae', choices=['resnet_heatmap','resnet','swin','mae','emotionnet_mae','gh_feat'])
parser.add_argument('--teacher_model_path', type=str, default='/home/ICT2000/dchang/TAC_project/BP4D_Face/checkpoints_mae/')
parser.add_argument('--student_model_name', type=str, default='resnet', choices=['resnet_heatmap','resnet','swin','mae','emotionnet_mae','gh_feat'])
parser.add_argument('--student_model_path', type=str, default=None)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--hidden_dim', type=int, default=128)
parser.add_argument('--pcc_loss', action='store_true')
parser.add_argument('--add_landmark', action='store_true')
parser.add_argument('--proj_layer', action='store_true')
#distillation
parser.add_argument('--alpha', type=float, default=1.0)
parser.add_argument('--T', type=float, default=1.0)
parser.add_argument('--fm_distillation', action='store_true')
parser.add_argument('--grad', action='store_true')
# training
parser.add_argument('--num_epochs', type=int, default=15)
parser.add_argument('--interval', type=int, default=500)
parser.add_argument('--threshold', type=float, default=0)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--learning_rate', type=float, default=3e-5)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--loss', type=str, default='unweighted')
parser.add_argument('--clip', type=int, default=1.0)
parser.add_argument('--when', type=int, default=10, help='when to decay learning rate')
parser.add_argument('--patience', type=int, default=5, help='early stopping')
# device
parser.add_argument('--device', type=str, default='cuda', choices=['cpu','cuda'])
opts = parser.parse_args()
print(opts)
os.makedirs(opts.ckpt_path,exist_ok=True)
# Fix random seed
set_seed(opts.seed)
# Setup solver
solver = solver_fm_distillation_grad(opts).cuda()
# Start training
solver.run()