-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathinference.py
54 lines (45 loc) · 2.12 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import argparse
from solver_inference import solver_in_domain
from utils import set_seed
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0)
# storage
parser.add_argument('--data_root', type=str, default='/home/ICT2000/dchang/TAC_project/data')
parser.add_argument('--ckpt_path', type=str, default='./fm_distillation_all')
# data
parser.add_argument('--data', type=str, default='BP4D', choices=['BP4D'])
parser.add_argument('--fold', type=str, default='all', choices=['0', '1', '2','all'])
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--image_size', type=int, default=256)
parser.add_argument('--crop_size', type=int, default=224)
parser.add_argument('--num_labels', type=int, default=12)
parser.add_argument('--sigma', type=float, default=10.0)
# model
parser.add_argument('--model_name', type=str, default='resnet', choices=['resnet_heatmap','resnet','swin','mae','emotionnet_mae','gh_feat'])
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--hidden_dim', type=int, default=128)
parser.add_argument('--half_precision', action='store_true')
# training
parser.add_argument('--num_epochs', type=int, default=30)
parser.add_argument('--interval', type=int, default=500)
parser.add_argument('--threshold', type=float, default=0)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--learning_rate', type=float, default=3e-5)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--loss', type=str, default='unweighted')
parser.add_argument('--clip', type=int, default=1.0)
parser.add_argument('--when', type=int, default=10, help='when to decay learning rate')
parser.add_argument('--patience', type=int, default=5, help='early stopping')
parser.add_argument('--fm_distillation', action='store_true')
# device
parser.add_argument('--device', type=str, default='cuda', choices=['cpu','cuda'])
opts = parser.parse_args()
print(opts)
# os.makedirs(opts.ckpt_path,exist_ok=True)
# Fix random seed
set_seed(opts.seed)
# Setup solver
solver = solver_in_domain(opts).cuda()
# Start training
solver.run()