Skip to content

Latest commit

 

History

History
463 lines (347 loc) · 14 KB

functions.rst

File metadata and controls

463 lines (347 loc) · 14 KB

Functions, why and how

In the previous two chapters, we saw the basic data types, and the basic control structures. They're basic in the sense that they are useful for some very basic needs. And as the needs, or the problem to solve with a program become complex, you'll feel the the need for complex data, and control structures.

The problem

Let's say that we have to write a program to retrieve the maximum value of two integers A and B. That's easy to do with a simple if statement, right?

//compare A and B and say wich is bigger
if A > B {
    fmt.Print("The max is A")
} else {
    fmt.Print("The max is B")
}

Now, imagine that we have to make such a comparison many times in our program. Writing the previous snippet every time becomes a real chore, and error-prone. This is why we need to encapsulate this snippet in a code block, give it a name and then call this code block every time we need to know the max of two numbers. This code block is what we call a function.

.. graphviz::

    digraph function {
        rankdir=LR;
        graph [bgcolor=transparent, resolution=96, fontsize="10"];
        node [shape=circle, fontsize=8, fixedsize=true, penwidth=.4];
        edge [arrowsize=.5, arrowtail="dot", color="#555555", penwidth=.4];
        block[label = "Function", shape="box", color=antiquewhite3, style=filled, peripheries=2];
        input1->block [color="#ff6600"];
        input2->block [color="#ff6600"];
        input3->block [color="#ff6600"];
        block->output1;
        block->output2;
        { rank=same; input1 input2 input3}
    }


A function is a code block that takes some items and returns some results.

If you've ever done some electronics, you'd see that functions really look like electronic circuits or chips. Need to amplify a signal? Take an amplifier chipset. Need to filter? Use a filter chipset and so on...

Your job as a software developer will be much easier, and far more fun once you start to think of a complex project as a set of modules for which the input is from the output of another module. The complexity of the solution will be reduced, and the debugging will be made easier also.

Let's see how to apply this sort of design to the following problem: suppose we have a function MAX(A, B) which takes two integers {A, B} and returns a single integer output M which is the larger value of both A and B:

.. graphviz::

    digraph MAX {
        rankdir=LR;
        graph [bgcolor=transparent, resolution=96, fontsize="10" ];
        node [shape=circle, fontsize=8, fixedsize=true, penwidth=.4];
        edge [arrowsize=.5, arrowtail="dot", color="#555555", penwidth=.4];
        block[label = "MAX", shape="box", color=antiquewhite3, style=filled, peripheries=2];
        A->block [color="#ff6600"];
        B->block [color="#ff6600"];
        block->M;
    }

By reusing the function MAX we can compute the maximum value of three values: A, B and C as follows:

.. graphviz::

    digraph MAX {
        rankdir=LR;
        graph [bgcolor=transparent, resolution=96, fontsize="10" ];
        node [shape=circle, fontsize=8, fixedsize=true, penwidth=.4];
        edge [arrowsize=.5, arrowtail="dot", color="#555555", penwidth=.4];
        max1[label = "MAX", shape="box", color=antiquewhite3, style=filled, peripheries=2];
        max2[label = "MAX", shape="box", color=antiquewhite3, style=filled, peripheries=2];
        A->max1 [color="#ff6600"];
        B->max1 [color="#ff6600"];
        max1->max2;
        C->max2 [color="#ff6600"];
        max2->X;
        { rank=same; A B C}
    }


This is a very simple example actually. In practice you probably should write a MAX3 function that takes 3 input integers and returns a single integer, instead of reusing the function MAX.

Of course, you can inject the output of a function into another if and only if the types match.

How to do this in Go?

The general syntax of a function is:

func funcname(input1 type1, input2 type2) (output1 type1, output2 type2) {
    //some code and processing here
    ...
    //return the results of the function
    return value1, value2
}

The details:

  • The keyword func is used to declare a function of name funcname.
  • A function may take as many input parameters as required. Each one followed by its type and all separated by commas.
  • A function may return many result values.
  • In the previous snippet, result1 and result2 are called named result parameters, if you don't want to name the return parameters, you can instead specify only the types, separated with commas.
  • If your function returns only one output value, you may omit the parenthesis arround the output declaration portion.
  • If your function doesn't return any value, you may omit it entirely.

Some examples to better understand these rules:

A simple Max function

package main
import "fmt"

//return the maximum between two int a, and b.
func max(a, b int) int {
    if a > b {
        return a
    }
    return b
}

func main() {
    x := 3
    y := 4
    z := 5

    max_xy := max(x, y) //calling max(x, y)
    max_xz := max(x, z) //calling max(x, z)

    fmt.Printf("max(%d, %d) = %d\n", x, y, max_xy)
    fmt.Printf("max(%d, %d) = %d\n", x, z, max_xz)
    fmt.Printf("max(%d, %d) = %d\n", y, z, max(y,z)) //just call it here
}

Output:

max(3, 4) = 4
max(3, 5) = 5
max(4, 5) = 5

Our function MAX takes two input parameters A and B, and returns a single int. Notice how we grouped A and B's types. We could have written: MAX(A int, B int), however, it is shorter this way.

Notice also that we prefered not to name our output value. We instead specified the output type (int).

A function with two ouput values

package main
import "fmt"

//return A+B and A*B in a single shot
func SumAndProduct(A, B int) (int, int) {
    return A+B, A*B
}

func main() {
    x := 3
    y := 4

    xPLUSy, xTIMESy := SumAndProduct(x, y)

    fmt.Printf("%d + %d = %d\n", x, y, xPLUSy)
    fmt.Printf("%d * %d = %d\n", x, y, xTIMESy)
}

Output:

3 + 4 = 7
3 * 4 = 12

A function with a result variable

package main

//look how we grouped the import of packages fmt and math
import(
    "fmt"
    "math"
)

//A function that returns a bool that is set to true of Sqrt is possible
//and false when not. And the actual square root of a float64
func MySqrt(f float64) (squareroot float64, ok bool){
    if f > 0 {
        squareroot, ok = math.Sqrt(f), true
    } else {
        squareroot, ok = 0, false
    }
    return squareroot, ok
}

func main() {
    for index := -2.0; index <= 10; index++ {
        squareroot, possible := MySqrt(index)
        if possible {
            fmt.Printf("The square root of %f is %f\n", index, squareroot)
        } else {
            fmt.Printf("Sorry, no square root for %f\n", index)
        }
    }
}

Outputs:

Sorry, no square root for -2.000000
Sorry, no square root for -1.000000
Sorry, no square root for 0.000000
The square root of 1.000000 is 1.000000
The square root of 2.000000 is 1.414214
The square root of 3.000000 is 1.732051
The square root of 4.000000 is 2.000000
The square root of 5.000000 is 2.236068
The square root of 6.000000 is 2.449490
The square root of 7.000000 is 2.645751
The square root of 8.000000 is 2.828427
The square root of 9.000000 is 3.000000
The square root of 10.000000 is 3.162278

Here, we import the package "math" in order to use the Sqrt (Square root) function it provides. We, then, write our own function MySqrt which returns two values: the first one is the actual sqaure root of the input parameter f and the second one is a boolean (indicates whether a square root is possible or not)

Notice how we use the parameters s and ok as actual variables in the function's body.

Since result variables are initialized to "zero" (0, 0.00, false...) according to its type, we can rewrite the previous example as follows:

import "math"

//return A+B and A*B in a single shot
func MySqrt(floater float64) (squareroot float64, ok bool){
    if floater > 0 {
        squareroot, ok = math.Sqrt(f), true
    }
    return squareroot, ok
}

The empty return

When using named output variables, if the function executes a return statement with no arguments, the current values of the result parameters are used as the returned values.

Thus, we can rewrite the previous example as follow:

import "math"

//return A+B and A*B in a single shot
func MySqrt(floater float64) (squareroot float64, ok bool) {
    if floater > 0 {
        squareroot, ok = math.Sqrt(f), true
    }
    return // Omitting the output named variables, but keeping the "return".
}

Parameters by value, and by reference

When passing an input parameter to a function, it actually recieves a copy of this parameter. So, if the function changes the value of this parameter, the original variable's value won't be changed, because the function works on a copy of the original variable's value.

An example to verify the previous paragraph:

package main
import "fmt"

//simple function that returns 1 + its input parameter
func add1(a int) int {
    a = a+1 // we change the value of a, by adding 1 to it
    return a //return the new value
}

func main() {
    x := 3

    fmt.Println("x = ", x) // Should print "x = 3"

    x1 := add1(x) //calling add1(x)

    fmt.Println("x+1 = ", x1) // Should print "x+1 = 4"
    fmt.Println("x = ", x) // Will print "x = 3"
}
x = 3
x+1 = 4
x = 3

You see? The value of x wasn't changed by the call of the function add1 even though we had an explicit a = a+1 instruction on line 6.

The reason is simple: when we called the function add1, it recieved a copy of the variable x and not x itself, hence it changed the copy's value, not the value of x itself.

I know the question you have in mind: "What if I wanted the value of x to be changed by calling the function?"

And here comes the utility of pointers: Instead of writing a function that has an int input parameter, we should give it a pointer to the variable we want to change! This way, the function has access to the original variable and it can change it.

Let's try this.

package main
import "fmt"

//simple function that returns 1 + its input parameter
func add1(a *int) int { // Notice that we give it a pointer to an int!
    *a = *a+1 // We dereference and change the value pointed by a
    return *a // Return the new value
}

func main() {
    x := 3

    fmt.Println("x = ", x) // Will print "x = 3"

    x1 := add1(&x) // Calling add1(&x) by passing the address of x to it

    fmt.Println("x+1 = ", x1) // Will print "x+1 = 4"
    fmt.Println("x = ", x) // Will print "x = 4"
}
x = 3
x+1 = 4
x = 4

Now, we have changed the value of x!

How is passing a reference to functions is useful? You may ask.

  • The first reason is that passing a reference makes function cooperation on a single variable possible. In other words, if we want to apply several functions on a given variable, they will all be able to change it.
  • A pointer is cheap. Cheap in terms of memory usage. We can have functions that operate on a big data value for example. Copying this data will, of course, require memory on each call as it is copied for use by the function. In this way, a pointer takes much less memory. Yo! Remember, it's just an address! :)

Function's signatures

Like with people, names don't matter that much. Do they? Well, yes, let's face it, they do matter, but what matters most is what they do, what they need, what they produce (Yeah you! Get back to work!).

In our previous example, we could have called our function add_one instead of add1, and that would still work as long as we call it by its name. What really matters in our function is:

  1. Its input parameters: how much? which types?
  2. Its output parameters: how much, which type?
  3. Its body code: What does the function do?

We can rewrite the function's body to work differently, and the main program would continue to compile and run without problems. But we can't change the input and output parameters in the function's declaration and still use its old parameters in the main program.

In other words, of the 3 elements we listed above, what matters even more is: what input parameters does the function expect, and what output parameters does it return.

These two elements are what we call a function signature, for which we use this formalism:

func (input1 type1 [, input2 type2 [, ...]]) (output1 OutputType1 [, output2 OutputType2 [,...]])

Or optionally with the function's name:

func function_name (input1 type1 [, input2 type2 [, ...]]) (output1 OutputType1 [, output2 OutputType2 [,...]])

Examples of signatures

//The signature of a function that takes an int and returns and int
func (int x) x int

//takes two float and returns a bool
func (float32, float32) bool

// Takes a string returns nothing
func (string)

// Takes nothing returns nothing
func()