-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path8_Discussion8.Rmd
160 lines (104 loc) · 7.16 KB
/
8_Discussion8.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
title: "Discussion8"
author: "Jing Lyu"
date: "3/1/2023"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
#### Two-way ANOVA with random effects
Consider a balanced design:
$$Y_{ijk} = \mu_{ij} +\epsilon_{ijk}=\mu_{\cdot\cdot} + \alpha_i+\beta_j + (\alpha\beta)_{ij}+\epsilon_{ijk},k=1,\ldots, n, j=1,\ldots, b, i=1,\ldots, a$$
where $\alpha_i \sim N(0,\sigma_{\alpha}^2)$, $\beta_j \sim N(0,\sigma_{\beta}^2)$, $(\alpha\beta)_{ij} \sim N(0,\sigma^2_{\alpha\beta})$, $\epsilon_{ijk} \sim_{iid} N(0,\sigma^2)$, and all random variables are mutually independent.
We have the following properties:
1. $\mathbb{E}[Y_{ijk}]=\mu_{\cdot\cdot}$.
2. ${\rm var}(Y_{ijk})=\sigma_{\alpha}^2+\sigma_{\beta}^2+\sigma_{\alpha\beta}^2+\sigma^2$.
3. ${\rm cov}(Y_{ijk},Y_{ijk'})=\sigma_{\alpha}^2+\sigma_{\beta}^2+\sigma_{\alpha\beta}^2$ for $k\neq k'$.
4. ${\rm cov}(Y_{ijk},Y_{ij'k'})=\sigma_{\alpha}^2$ for $j\neq j'$.
5. ${\rm cov}(Y_{ijk},Y_{i'jk'})=\sigma_{\beta}^2$ for $i\neq i'$.
6. ${\rm cov}(Y_{ijk},Y_{i'j'k'})=0$ when no indices are equal.
$\mathbb{E}[{\rm MSA}]=\sigma^2+n\sigma^2_{\alpha\beta}+bn\sigma^2_{\alpha}, \mathbb{E}[{\rm MSB}]=\sigma^2+n\sigma^2_{\alpha\beta}+an\sigma^2_{\beta},\\ \mathbb{E}[{\rm MSAB}]=\sigma^2+n\sigma^2_{\alpha\beta}, \mathbb{E}[{\rm MSE}]=\sigma^2$
then
$\mathbb{E}[{\rm MSAB}]- \mathbb{E}[{\rm MSE}]=n\sigma^2_{\alpha\beta}, \mathbb{E}[{\rm MSA}]-\mathbb{E}[{\rm MSAB}]=bn \sigma_{\alpha}^2, \mathbb{E}[{\rm MSB}]-\mathbb{E}[{\rm MSAB}]=an \sigma_{\beta}^2$.
Test statistics:
![](/Users/jinglyu/Desktop/ucd/2023W/STA207/CourseMaterials/Discussion/Discussion8/table1.jpg)
For this section, we consider a dataset from online resources. Five employees are randomly selected from a company. Six batches of source material are randomly selected from the production process. The material from each batch was divided into 15 pieces. They were randomized to the different employees such that each employee would have three test specimens from each batch. The response was the corresponding quality score.
```{r batch}
book.url <- "https://stat.ethz.ch/~meier/teaching/book-anova"
quality <- readRDS(url(file.path(book.url, "data/quality.rds")))
str(quality)
head(quality)
with(quality, interaction.plot(x.factor = batch, trace.factor = employee, response = score))
```
It seems variation exists between employees and between batches. Interaction effect is not obvious.
##### Model fitting
Consider random main effects and random interaction effect:
```{r two.random, message=F, warning=F}
library(lme4)
fit.quality = lmer(score ~ (1 | employee) + (1 | batch) +
(1 | employee:batch), data = quality)
summary(fit.quality)
```
From the output, we have $\widehat{\sigma_\alpha}^2=1.54$(employee), $\widehat{\sigma_\beta}^2=0.52$(batch), $\widehat{\sigma_{\alpha\beta}}^2=0.02$(interaction), and $\widehat{\sigma}^2=0.23$(error).
The largest contribution to the total variance is the variance among employees which contributes to $1.54/(1.54+0.52+0.02+0.23)\approx67\%$ of the total variance.
#### Mixed effects model
Consider a balanced design:
$$Y_{ijk}=\mu+\alpha_i+\beta_j+(\alpha\beta)_{ij}+\epsilon_{ijk},k=1,\ldots, n, j=1,\ldots, b, i=1,\ldots, a$$
where
$\alpha_i$ is the fixed effect with constraints $\sum\alpha_i=0$.
$\beta_j$ is the random effect following i.i.d. $N(0,\sigma_{\beta}^2)$.
$(\alpha\beta)_{ij}$ is the corresponding random interaction effect with constraints $\sum_i(\alpha\beta)_{ij}=0$ for any $j$. $(\alpha\beta)_{ij}\sim N(0,(1-1/a)\sigma^2_{\alpha\beta})$, ${\rm cov}( (\alpha\beta)_{ij}, (\alpha\beta)_{i'j})= -\sigma^2_{\alpha\beta}/a$, ${\rm cov}( (\alpha\beta)_{ij}, (\alpha\beta)_{i'j'})=0$, if $i\neq i'$ and $j\neq j'$.
$\{\epsilon_{ijk}\}$ are i.i.d. $N(0,\sigma^2)$. $\{ \beta_j\}$, $\{(\alpha\beta)_{ij}\}$, $\{\epsilon_{ijk} \}$ are mutually independent.
We have the following properties:
1. $\mathbb{E}[Y_{ijk}]=\mu_{\cdot\cdot}+\alpha_i$
2. ${\rm var}(Y_{ijk})=\sigma_{\beta}^2+(1-1/a)\sigma_{\alpha\beta}^2+\sigma^2$.
3. ${\rm cov}(Y_{ijk},Y_{ijk'})=\sigma_{\beta}^2+(1-1/a)\sigma_{\alpha\beta}^2$ for $k\neq k'$.
4. ${\rm cov}(Y_{ijk},Y_{ij'k'})=0$ for $j\neq j'$.
5. ${\rm cov}(Y_{ijk},Y_{i'jk'})=\sigma_{\beta}^2-\sigma_{\alpha\beta}^2/a$ for $i\neq i'$.
6. ${\rm cov}(Y_{ijk},Y_{i'j'k'})=0$ when no indices are equal.
$\mathbb{E}[{\rm MSA}]=\sigma^2+nb\frac{\sum\alpha_i^2}{a-1}+n\sigma^2_{\alpha\beta}, \mathbb{E}[{\rm MSB}]=\sigma^2+an\sigma^2_{\beta}, \\ \mathbb{E}[{\rm MSAB}]=\sigma^2+n\sigma^2_{\alpha\beta}, \mathbb{E}[{\rm MSE}]=\sigma^2$
then
$\mathbb{E}[{\rm MSAB}]- \mathbb{E}[{\rm MSE}]=n\sigma^2_{\alpha\beta}, \mathbb{E}[{\rm MSA}]-\mathbb{E}[{\rm MSAB}]=nb\frac{\sum\alpha_i^2}{a-1}, \mathbb{E}[{\rm MSB}]-\mathbb{E}[{\rm MSE}]=an \sigma_{\beta}^2$
Test statistics:
![](/Users/jinglyu/Desktop/ucd/2023W/STA207/CourseMaterials/Discussion/Discussion8/table2.jpg)
For this section, we use `Machines` dataset from `nlme` package. It contains experiment results of three brands of machines. Six workers were randomly chosen among the employees of a factory to operate each machine three times. Productivity score is considered as the response variable.
```{r mixed}
data("Machines", package = "nlme")
class(Machines) <- "data.frame"
Machines[, "Worker"] <- factor(Machines[, "Worker"], levels = 1:6,
ordered = FALSE)
str(Machines, give.attr = FALSE) ## give.attr to shorten output
```
##### Visualization
We use the mean of scores for each combination of worker and machine to visualize the data.
```{r visual}
library(ggplot2)
ggplot(Machines, aes(x = Machine, y = score, group = Worker, col = Worker)) +
geom_point() + stat_summary(fun = mean, geom = "line") + theme_bw()
```
We can see the difference of scores among machines. Machine C has the largest productivity in general. We can also observe different profiles across workers. Most workers show similar profiles except that worker 6 performs badly on machine B.
Suppose the interest is to study the specific machines, then machine is regarded as a fixed effect. Each worker is randomly selected from the factory and has its own random deviation. We use mixed effects model to make inference.
##### Model fitting
```{r mix, message=F, warning=F}
fit.machines <- lmer(score ~ Machine + (1 | Worker) +
(1 | Worker:Machine), data = Machines)
anova(fit.machines)
```
`lme4` does not calculate p-values for the fixed effects, so the package `lmerTest` was used instead.
`contr.treatment` contrasts each level with the baseline level (reference group).
`contr.poly` returns contrasts based on orthogonal polynomials.
```{r lmerTest}
options(contrasts = c("contr.treatment", "contr.poly"))
#library(lmerTest)
fit.machines <- lmerTest::lmer(score ~ Machine + (1 | Worker) +
(1 | Worker:Machine), data = Machines)
anova(fit.machines)
```
The fixed effect of machine is significant.
```{r summary}
summary(fit.machines)
```
Machine A is considered as the reference gorup. The productivity score on machine B is on average 7.97 units larger than on machine A.
### References
https://stat.ethz.ch/~meier/teaching/anova/random-and-mixed-effects-models.html#eq:cell-means-random