Skip to content

Commit 2ed11d7

Browse files
committed
WildCat/Pullbacks: pullbacks in induced wild categories
1 parent bda9ab3 commit 2ed11d7

File tree

1 file changed

+32
-2
lines changed

1 file changed

+32
-2
lines changed

theories/WildCat/Pullbacks.v

Lines changed: 32 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,8 @@
11
Require Import Basics.Equivalences Basics.Overture Basics.Tactics Basics.Trunc.
22
Require Import Limits.Pullback.
3-
Require Import WildCat.Core WildCat.Equiv WildCat.EquivGpd
4-
WildCat.Universe WildCat.Yoneda WildCat.Graph WildCat.ZeroGroupoid.
3+
Require Import WildCat.Core WildCat.Equiv WildCat.EquivGpd.
4+
Require Import WildCat.Universe WildCat.Yoneda WildCat.Graph WildCat.ZeroGroupoid.
5+
Require Import WildCat.Induced.
56

67
(** * Categories with pullbacks *)
78

@@ -175,6 +176,35 @@ Definition flip_pullback_pr2_pr1 {A : Type} `{Is1Cat A}
175176
: (flip_cat_pb f g pb).(cat_pb_pr2) $== cat_pb_pr1
176177
:= Id _.
177178

179+
(** ** Pullbacks in induced wild categories *)
180+
181+
Section Induced.
182+
183+
(** If the 1-category structure on [A] is induced from that on [B] along a map [F], the pullback of [F f] and [F g] exists in [B], and that pullback object is in the image of [F], then the preimage is also a pullback. Typically this will be applied with [h] being [idpath], but it would be awkward to state this lemma assuming that. *)
184+
Instance cat_pb_induced {A B} `{Is1Cat B}
185+
(F : A -> B)
186+
{a b c : A} (f : F a $-> F c) (g : F b $-> F c)
187+
{p : CatPullback f g}
188+
(q : A) (h : F q = cat_pb f g)
189+
: CatPullback (A:=A) (H:=is1cat_induced F) f g.
190+
Proof.
191+
destruct p as [pb pr1 pr2 glue iseq].
192+
unfold cat_pb in h; destruct h.
193+
exact (Build_CatPullback' (H:=is1cat_induced F) f g q pr1 pr2 glue (iseq o F)).
194+
Defined.
195+
196+
Instance haspullbacks_induced {A B} `{HasPullbacks B}
197+
(F : A -> B)
198+
(K : forall (a b c : A) (f : F a $-> F c) (g : F b $-> F c), exists q, F q = cat_pb f g)
199+
: HasPullbacks A (H:=is1cat_induced F).
200+
Proof.
201+
intros a b c f g.
202+
destruct (K a b c f g) as [q h].
203+
exact (cat_pb_induced F f g q h).
204+
Defined.
205+
206+
End Induced.
207+
178208
(** ** Examples *)
179209

180210
(** These examples are here for dependency reasons. *)

0 commit comments

Comments
 (0)