Skip to content

Commit 85cf65e

Browse files
Merge pull request HoTT#2326 from jdchristensen/HSpaceS1-univalence
HSpaceS1: move Univalence assumption to just where needed
2 parents ce212b6 + 512e13b commit 85cf65e

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

theories/Homotopy/HSpaceS1.v

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -9,8 +9,6 @@ Require Import Spaces.Spheres.
99

1010
Section HSpace_S1.
1111

12-
Context `{Univalence}.
13-
1412
Definition Sph1_ind (P : Sphere 1 -> Type) (b : P North)
1513
(p : DPath P (merid North @ (merid South)^) b b)
1614
: forall x : Sphere 1, P x.
@@ -87,7 +85,9 @@ Section HSpace_S1.
8785
Definition iscohhspace_s1 : IsCohHSpace (psphere 1)
8886
:= Build_IsCohHSpace _ _ _.
8987

90-
#[export] Instance associative_sgop_s1
88+
(* [Univalence] implies that S^1 is 1-truncated, which means that any two parallel 2-paths are equal. This lets us trivialize some path algebra in the following results. Is it possible to prove these results without [Univalence]? *)
89+
90+
#[export] Instance associative_sgop_s1 `{Univalence}
9191
: Associative sgop_s1.
9292
Proof.
9393
intros x y z.
@@ -100,10 +100,10 @@ Section HSpace_S1.
100100
{ apply (sq_flip_v (px0:=1) (px1:=1)).
101101
exact (ap_nat' (fun a => ap (fun b => sgop_s1 b z)
102102
(rightidentity_s1 a)) (merid North @ (merid South)^)). }
103-
apply path_ishprop.
103+
apply path_ishprop. (* Uses Univalence. *)
104104
Defined.
105105

106-
#[export] Instance commutative_sgop_s1
106+
#[export] Instance commutative_sgop_s1 `{Univalence}
107107
: Commutative sgop_s1.
108108
Proof.
109109
intros x y.
@@ -114,7 +114,7 @@ Section HSpace_S1.
114114
revert y.
115115
srapply Sph1_ind.
116116
1: exact (ap_nat' rightidentity_s1 _).
117-
srapply dp_ishprop.
117+
srapply dp_ishprop. (* Uses Univalence. *)
118118
Defined.
119119

120120
End HSpace_S1.

0 commit comments

Comments
 (0)