forked from Aalto-QuML/ClimODE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
497 lines (380 loc) · 18.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import numpy as np
import pandas as pd
import xarray as xr
from matplotlib import cm, pyplot as plt
import random
import urllib
from numpy import load
import os
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchcubicspline import(natural_cubic_spline_coeffs,
NaturalCubicSpline)
from scipy import interpolate
import scipy
from model_utils import *
from torch.utils.data import DataLoader
import matplotlib.patches as patches
import matplotlib.colors as colors
import properscoring as ps
BOUNDARIES = {
'NorthAmerica': { # 8x14
'lat_range': (15, 65),
'lon_range': (220, 300)
},
'SouthAmerica': { # 14x10
'lat_range': (-55, 20),
'lon_range': (270, 330)
},
'Europe': { # 6x8
'lat_range': (30, 65),
'lon_range': (0, 40)
},
'SouthAsia': { # 10, 14
'lat_range': (-15, 45),
'lon_range': (25, 110)
},
'EastAsia': { # 10, 12
'lat_range': (5, 65),
'lon_range': (70, 150)
},
'Australia': { # 10x14
'lat_range': (-50, 10),
'lon_range': (100, 180)
}
}
def set_seed(seed: int = 42) -> None:
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# When running on the CuDNN backend, two further options must be set
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Set a fixed value for the hash seed
os.environ["PYTHONHASHSEED"] = str(seed)
print(f"Random seed set as {seed}")
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def get_batched(train_times,data_train_final,lev):
for idx,year in enumerate(train_times):
data_per_year = data_train_final.sel(time=slice(str(year),str(year))).load()
data_values = data_per_year[lev].values
if idx ==0:
train_data = torch.from_numpy(data_values).reshape(-1,1,1,data_values.shape[-2],data_values.shape[-1])
if year%4==0: train_data = torch.cat((train_data[:236],train_data[240:])) #skipping 29 feb in leap year
else:
mid_data = torch.from_numpy(data_values).reshape(-1,1,1,data_values.shape[-2],data_values.shape[-1])
if year%4==0: mid_data = torch.cat((mid_data[:236],mid_data[240:]))#skipping 29 feb in leap year
train_data = torch.cat([train_data,mid_data],dim=1)
return train_data
def get_train_test_data_without_scales_batched(data_path,train_time_scale,val_time_scale,test_time_scale,lev,spectral):
data = xr.open_mfdataset(data_path, combine='by_coords')
#data = data.isel(lat=slice(None, None, -1))
if lev in ["v","u","r","q","tisr"]:
data = data.sel(level=500)
data = data.resample(time="6H").nearest(tolerance="1H") # Setting data to be 6-hour cycles
data_train = data.sel(time=train_time_scale).load()
data_val = data.sel(time=val_time_scale).load()
data_test = data.sel(time=test_time_scale).load()
data_global = data.sel(time=slice('2006','2018')).load()
max_val = data_global.max()[lev].values.tolist()
min_val = data_global.min()[lev].values.tolist()
data_train_final = (data_train - min_val)/ (max_val - min_val)
data_val_final = (data_val - min_val)/ (max_val - min_val)
data_test_final = (data_test - min_val)/ (max_val - min_val)
time_vals = data_test_final.time.values
train_times = [i for i in range(2006,2016)]
test_times = [2017,2018]
val_times = [2016]
train_data = get_batched(train_times,data_train_final,lev)
test_data = get_batched(test_times,data_test_final,lev)
val_data = get_batched(val_times,data_val_final,lev)
t = [i for i in range(365*4)]
time_steps = torch.tensor(t).view(-1,1)
return train_data,val_data,test_data,time_steps,data.lat.values,data.lon.values,max_val,min_val,time_vals
def get_train_test_data_batched_regional(data_path,train_time_scale,val_time_scale,test_time_scale,lev,spectral,region):
data = xr.open_mfdataset(data_path, combine='by_coords')
lon_range = slice(BOUNDARIES[region]['lon_range'][0],BOUNDARIES[region]['lon_range'][1])
lat_range = slice(BOUNDARIES[region]['lat_range'][0],BOUNDARIES[region]['lat_range'][1])
data = data.sel(lat=lat_range,lon=lon_range)
#data = data.isel(lat=slice(None, None, -1))
if lev in ["v","u","r","q","tisr"]:
data = data.sel(level=500)
data = data.resample(time="6H").nearest(tolerance="1H") # Setting data to be 6-hour cycles
data_train = data.sel(time=train_time_scale).load()
data_val = data.sel(time=val_time_scale).load()
data_test = data.sel(time=test_time_scale).load()
data_global = data.sel(time=slice('2006','2018')).load()
max_val = data_global.max()[lev].values.tolist()
min_val = data_global.min()[lev].values.tolist()
#breakpoint()
mean_global = data_global.mean()
std_global = data_global.std()
#data_train_final = (data_train - mean_global)/ std_global
#data_val_final = (data_val - mean_global)/ std_global
#data_test_final = (data_test - mean_global)/ std_global
data_train_final = (data_train - min_val)/ (max_val - min_val)
data_val_final = (data_val - min_val)/ (max_val - min_val)
data_test_final = (data_test - min_val)/ (max_val - min_val)
time_vals = data_test_final.time.values
train_times = [i for i in range(2006,2016)]
test_times = [2017,2018]
val_times = [2016]
train_data = get_batched(train_times,data_train_final,lev)
test_data = get_batched(test_times,data_test_final,lev)
val_data = get_batched(val_times,data_val_final,lev)
t = [i for i in range(365*4)]
time_steps = torch.tensor(t).view(-1,1)
return train_data,val_data,test_data,time_steps,data.lat.values,data.lon.values,max_val,min_val,time_vals
def nll(mean,std,truth,lat,var_coeff):
normal_lkl = torch.distributions.normal.Normal(mean, 1e-3 + std)
lkl = - normal_lkl.log_prob(truth)
loss_val = lkl.mean() + var_coeff*(std**2).sum()
#loss_val = torch.mean(lkl,dim=(0,1,3,4))
return loss_val
def evaluation_rmsd_mm(Pred,Truth,lat,lon,max_vals,min_vals,H,W,levels):
RMSD_final = []
RMSD_lat_lon = []
true_lat_lon = []
pred_lat_lon = []
for idx,lev in enumerate(levels):
true_idx = idx
das_pred = []
das_true = []
pred_spectral = Pred[idx].detach().cpu().numpy()
true_spectral = Truth[true_idx,:,:].detach().cpu().numpy()
pred = pred_spectral*(max_vals[idx] - min_vals[idx]) + min_vals[idx]
das_pred.append(xr.DataArray(pred.reshape(1,H,W),dims=['time','lat','lon'],coords={'time':[0],'lat':lat,'lon':lon},name=lev))
Pred_xr = xr.merge(das_pred)
true = true_spectral*(max_vals[idx] - min_vals[idx]) + min_vals[idx]
das_true.append(xr.DataArray(true.reshape(1,H,W),dims=['time','lat','lon'],coords={'time':[0],'lat':lat,'lon':lon},name=lev))
True_xr = xr.merge(das_true)
error = Pred_xr - True_xr
weights_lat = np.cos(np.deg2rad(error.lat))
weights_lat /= weights_lat.mean()
rmse = np.sqrt(((error)**2 * weights_lat).mean(dim=['lat','lon'])).mean(dim=['time'])
lat_lon_rmse = np.sqrt((error)**2)
RMSD_lat_lon.append(lat_lon_rmse[lev].values)
RMSD_final.append(rmse[lev].values.tolist())
return RMSD_final
def evaluation_rmsd_mm_region(Pred,Truth,lat,lon,max_vals,min_vals,H,W,levels):
RMSD_final = []
RMSD_lat_lon = []
true_lat_lon = []
pred_lat_lon = []
for idx,lev in enumerate(levels):
true_idx = idx
das_pred = []
das_true = []
pred_spectral = Pred[idx,1:,1:].detach().cpu().numpy()
true_spectral = Truth[true_idx,1:,1:].detach().cpu().numpy()
pred = pred_spectral*(max_vals[idx] - min_vals[idx]) + min_vals[idx]
das_pred.append(xr.DataArray(pred.reshape(1,H,W-1),dims=['time','lat','lon'],coords={'time':[0],'lat':lat[1:],'lon':lon[1:]},name=lev))
Pred_xr = xr.merge(das_pred)
true = true_spectral*(max_vals[idx] - min_vals[idx]) + min_vals[idx]
das_true.append(xr.DataArray(true.reshape(1,H,W-1),dims=['time','lat','lon'],coords={'time':[0],'lat':lat[1:],'lon':lon[1:]},name=lev))
True_xr = xr.merge(das_true)
error = Pred_xr - True_xr
weights_lat = np.cos(np.deg2rad(error.lat))
weights_lat /= weights_lat.mean()
rmse = np.sqrt(((error)**2 * weights_lat).mean(dim=['lat','lon'])).mean(dim=['time'])
lat_lon_rmse = np.sqrt((error)**2)
RMSD_lat_lon.append(lat_lon_rmse[lev].values)
RMSD_final.append(rmse[lev].values.tolist())
return RMSD_final
def evaluation_acc_mm(Pred,Truth,lat,lon,max_vals,min_vals,H,W,levels,clim):
ACC_final = []
for idx,lev in enumerate(levels):
pred_spectral = Pred[idx].detach().cpu().numpy()
true_spectral = Truth[idx,:,:].detach().cpu().numpy()
pred_spectral = pred_spectral - clim[idx]
true_spectral = true_spectral - clim[idx]
pred = pred_spectral*(max_vals[idx] - min_vals[idx]) + min_vals[idx]
true = true_spectral*(max_vals[idx] - min_vals[idx]) + min_vals[idx]
weights_lat = np.cos(np.deg2rad(lat))
weights_lat /= weights_lat.mean()
weights_lat = weights_lat.reshape(len(lat),1)
weights_lat = weights_lat.repeat(len(lon),1)
pred_prime = pred - np.mean(pred)
true_prime = true - np.mean(true)
acc= np.sum(weights_lat * pred_prime * true_prime) / np.sqrt(np.sum(weights_lat * pred_prime**2) * np.sum(weights_lat * true_prime**2))
ACC_final.append(acc)
return ACC_final
def evaluation_acc_mm_region(Pred,Truth,lat,lon,max_vals,min_vals,H,W,levels,clim):
ACC_final = []
for idx,lev in enumerate(levels):
pred_spectral = Pred[idx,1:].detach().cpu().numpy()
true_spectral = Truth[idx,1:,:].detach().cpu().numpy()
pred_spectral = pred_spectral - clim[idx,1:]
true_spectral = true_spectral - clim[idx,1:]
pred = pred_spectral*(max_vals[idx] - min_vals[idx]) + min_vals[idx]
true = true_spectral*(max_vals[idx] - min_vals[idx]) + min_vals[idx]
weights_lat = np.cos(np.deg2rad(lat[1:]))
weights_lat /= weights_lat.mean()
weights_lat = weights_lat.reshape(len(lat[1:]),1)
weights_lat = weights_lat.repeat(len(lon),1)
pred_prime = pred - np.mean(pred)
true_prime = true - np.mean(true)
acc= np.sum(weights_lat * pred_prime * true_prime) / np.sqrt(np.sum(weights_lat * pred_prime**2) * np.sum(weights_lat * true_prime**2))
ACC_final.append(acc)
return ACC_final
def evaluation_crps_mm(Pred,Truth,lat,lon,max_vals,min_vals,H,W,levels,Sigma):
CRPS_final = []
for idx,lev in enumerate(levels):
pred_spectral = Pred[idx].detach().cpu().numpy()
true_spectral = Truth[idx,:,:].detach().cpu().numpy()
std_spectral = Sigma[idx].detach().cpu().numpy()
pred = pred_spectral*(max_vals[idx] - min_vals[idx]) + min_vals[idx]
true = true_spectral*(max_vals[idx] - min_vals[idx]) + min_vals[idx]
crps = ps.crps_gaussian(true_spectral, mu=pred_spectral, sig=std_spectral)
CRPS_final.append(crps)
return CRPS_final
def add_constant_info(path):
data = xr.open_mfdataset(path, combine='by_coords')
for idx,var in enumerate(['orography','lsm']):
var_value = torch.from_numpy(data[var].values).view(1,1,32,64)
if idx ==0: final_var = var_value
else:
final_var = torch.cat([final_var,var_value],dim=1)
return final_var,torch.from_numpy(data['lat2d'].values),torch.from_numpy(data['lon2d'].values)
def add_constant_info_region(path,region,H,W):
data = xr.open_mfdataset(path, combine='by_coords')
lon_range = slice(BOUNDARIES[region]['lon_range'][0],BOUNDARIES[region]['lon_range'][1])
lat_range = slice(BOUNDARIES[region]['lat_range'][0],BOUNDARIES[region]['lat_range'][1])
data = data.sel(lat=lat_range,lon=lon_range)
for idx,var in enumerate(['orography','lsm']):
var_value = torch.from_numpy(data[var].values).view(1,1,H,W)
if idx ==0: final_var = var_value
else:
final_var = torch.cat([final_var,var_value],dim=1)
return final_var,torch.from_numpy(data['lat2d'].values),torch.from_numpy(data['lon2d'].values)
def get_delta_u(u_vel,t_steps):
levels = ["z","t","t2m","u10","v10","tisr","v","u","r","q"]
t = t_steps.flatten().float()*6
title = {"z":"Geopotential","v10": "v component of wind at 10m","u10": "u component of wind at 10m","t2m": "Temperature at 2m","t": "Temperature at 850hPa pressure"}
input_u_vel = u_vel.view(u_vel.shape[0],u_vel.shape[1],-1)
coeffs = natural_cubic_spline_coeffs(t, input_u_vel)
spline = NaturalCubicSpline(coeffs)
point = t[-1]
out = spline.derivative(point).view(-1,u_vel.shape[2],u_vel.shape[3],u_vel.shape[4])
return out
def get_gauss_kernel(shape,lat,lon):
cwd = os.getcwd()
rows,columns = shape
kernel = torch.zeros(shape[0]*shape[1],shape[0]*shape[1])
pos = []
for i in range(rows):
for j in range(columns):
pos.append([lat[i],lon[j]])
for i in range(rows*columns):
for j in range(rows*columns):
dist = torch.sum((torch.tensor(pos[i]) - torch.tensor(pos[j]))**2)
kernel[i][j] = torch.exp(-dist/(2*1*1))
kernel_inv = torch.linalg.inv(kernel).numpy()
np.save(str(cwd) +"/kernel.npy",kernel_inv)
def get_gauss_kernel_region(shape,lat,lon,region):
cwd = os.getcwd()
rows,columns = shape
kernel = torch.zeros(shape[0]*shape[1],shape[0]*shape[1])
pos = []
for i in range(rows):
for j in range(columns):
pos.append([lat[i],lon[j]])
for i in range(rows*columns):
for j in range(rows*columns):
dist = torch.sum((torch.tensor(pos[i]) - torch.tensor(pos[j]))**2)
kernel[i][j] = torch.exp(-dist/(2*1*1))
kernel_inv = torch.linalg.inv(kernel).numpy()
np.save(str(cwd) +"/kernel_"+str(region)+".npy",kernel_inv)
def optimize_vel(num,data,delta_u,vel_model,kernel,H,W,steps=200):
model = vel_model(num,H,W)
optimizer = optim.Adam(model.parameters(),lr=2)
best_loss = float('inf')
loss_step = []
for step in range(steps):
optimizer.zero_grad()
out,v_x,v_y = model(data)
kernel_v_x = v_x.view(num,5,-1,1)
kernel_v_y = v_y.view(num,5,-1,1)
kernel_expand = kernel.expand(num,5,kernel.shape[0],kernel.shape[1])
v_x_kernel = torch.matmul(kernel_v_x.transpose(2,3), kernel_expand)
final_x = torch.matmul(v_x_kernel, kernel_v_x).mean()
v_y_kernel = torch.matmul(kernel_v_y.transpose(2,3), kernel_expand)
final_y = torch.matmul(v_y_kernel, kernel_v_y).mean()
vel_loss = nn.MSELoss()(delta_u,out.squeeze(dim=1)) + 0.0000001*(final_x + final_y)
loss_step.append(vel_loss.item())
if vel_loss.item() < best_loss:
best_loss = vel_loss.item()
final_vx = v_x
final_vy = v_y
final_out = out
vel_loss.backward()
optimizer.step()
return final_vx,final_vy,loss_step,final_out
def fit_velocity(time_idx,time_loader,Final_train_data,data_loader,device,num_years,paths_to_data,scale,H,W,types,vel_model,kernel,lat,lon):
num =0
cwd = os.getcwd()
for idx_steps,time_steps,batch in zip(time_idx,time_loader,data_loader):
pst = [time_steps[0].item()-i for i in range(3)]
pst.reverse()
pst_idx = [idx_steps[0].item()-i for i in range(3)]
pst_idx.reverse()
past_time = torch.tensor(pst).to(device)
data = batch[0].to(device).view(num_years,1,len(paths_to_data)*(scale+1),H,W)
past_sample = [Final_train_data[j].view(num_years,-1,len(paths_to_data)*(scale+1),H,W) for j in pst_idx]
past_sample = torch.stack(past_sample).view(num_years,3,-1,H,W).to(device)
delta_u = get_delta_u(past_sample,past_time)
v_x,v_y,loss_terms,out = optimize_vel(num_years,data,delta_u,vel_model,kernel,H,W)
final_v = torch.cat([v_x,v_y],dim=1).unsqueeze(dim=0)
if num == 0:
Final_v = final_v
else:
Final_v = torch.cat([Final_v,final_v],dim=0)
num = num+1
if os.path.exists(str(cwd) +"/" + types + "_vel.npy"):
os.remove(str(cwd) +"/" + types + "_vel.npy")
np.save(str(cwd) +"/" + types + "_vel.npy",Final_v.detach().numpy())
def load_velocity(types):
cwd = os.getcwd()
vel = []
for file in types:
vel.append(np.load(str(cwd) + "/" + file + "_vel.npy"))
return (torch.from_numpy(v) for v in vel)
def get_batched_monthly(train_times,data_train_final,lev):
for idx,year in enumerate(train_times):
data_per_year = data_train_final.sel(time=slice(str(year),str(year))).load()
data_values = data_per_year[lev].values
t_data = torch.from_numpy(data_values).reshape(-1,1,1,data_values.shape[-2],data_values.shape[-1])
if idx ==0:
train_data = t_data
else:
train_data = torch.cat([train_data,t_data],dim=1)
return train_data
def get_train_test_data_without_scales_batched_monthly(data_path,train_time_scale,val_time_scale,test_time_scale,lev,spectral):
data = xr.open_mfdataset(data_path, combine='by_coords')
if lev in ["v","u","r","q","tisr"]:
data = data.sel(level=500)
data = data.resample(time="6H").nearest(tolerance="1H") # Setting data to be 6-hour cycles
data = data.resample(time="MS").mean()
data_train = data.sel(time=train_time_scale).load()
data_val = data.sel(time=val_time_scale).load()
data_test = data.sel(time=test_time_scale).load()
data_global = data.sel(time=slice('2006','2018')).load()
max_val = data_global.max()[lev].values.tolist()
min_val = data_global.min()[lev].values.tolist()
data_train_final = (data_train - min_val)/ (max_val - min_val)
data_val_final = (data_val - min_val)/ (max_val - min_val)
data_test_final = (data_test - min_val)/ (max_val - min_val)
time_vals = data_test_final.time.values
train_times = [i for i in range(2006,2016)]
test_times = [2017,2018]
val_times = [2016]
train_data = get_batched_monthly(train_times,data_train_final,lev)
test_data = get_batched_monthly(test_times,data_test_final,lev)
val_data = get_batched_monthly(val_times,data_val_final,lev)
t = [i for i in range(12)]
time_steps = torch.tensor(t).view(-1,1)
return train_data,val_data,test_data,time_steps,data.lat.values,data.lon.values,max_val,min_val,time_vals