-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsample_lsag.py
185 lines (152 loc) · 6.52 KB
/
sample_lsag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# MIT License
#
# Copyright (C) 2014 Jesper Borgstrup
# -------------------------------------------------------------------
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation
# files (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import hashlib
import time
from random import randint
from echelper import ECHelper
from curve import Curve
from keypair import KeyPair
CURVE = "secp256k1"
KEY_COUNT = 10000
DEBUG = False
def sign(curve, keys, signer_index, message="Hello message"):
key_count = len( keys )
# Set signer
signer = keys[signer_index]
# Make room for c_i, s_i, z'_i, and z''_i variables
cs = [0] * key_count
ss = [0] * key_count
z_s = [0] * key_count
z__s = [0] * key_count
# Retrieve all public keys and their coordinates
public_keys = map( lambda key: key.public_key, keys )
public_keys_coords = map( lambda point: (point.x, point.y), public_keys )
# Step 1
public_keys_hash = curve.hash_to_field( "%s" % public_keys_coords )
H = H2( curve, public_keys_coords )
Y_tilde = signer.private_key * H
# Step 2
u = randint( 0, curve.order )
pi_plus_1 = (signer_index+1) % key_count
cs[pi_plus_1] = H1( curve, public_keys_hash, Y_tilde, message,
u * curve.G, u * H )
# Step 3
for i in range( signer_index+1, key_count ) + range( signer_index ):
ss[i] = randint( 0, curve.order )
next_i = (i+1) % key_count
z_s[i] = ss[i] * curve.G + cs[i] * public_keys[i]
z__s[i] = ss[i] * H + cs[i] * Y_tilde
cs[next_i] = H1( curve, public_keys_hash, Y_tilde, message, z_s[i], z__s[i] )
# Step 4
ss[signer_index] = ( u - signer.private_key * cs[signer_index] ) % curve.order
if DEBUG:
print "SIGN H: %s" % H
print "SIGN Y_tilde: %s" % Y_tilde
for i in range( len( cs ) ):
print "SIGN c_%d: %d" % ( i, cs[i] )
print "SIGN s_%d: %d" % ( i, ss[i] )
if z_s[i] != 0:
print "SIGN Z_%d: %s" % ( i, z_s[i] )
if z__s[i] != 0:
print "SIGN Z__%d: %s" % ( i, z__s[i] )
print "-----------------------------------------"
return ( public_keys,
message,
cs[0],
ss,
Y_tilde
)
def verify( curve, public_keys, message, c_0, ss, Y_tilde ):
public_keys_coords = map( lambda point: ( point.x, point.y ) , public_keys )
n = len( public_keys )
cs = [c_0] + [0] * ( n - 1 )
z_s = [0] * n
z__s = [0] * n
# Step 1
public_keys_hash = curve.hash_to_field( "%s" % public_keys_coords )
H = H2( curve, public_keys_coords )
for i in range( n ):
z_s[i] = ss[i] * curve.G + cs[i] * public_keys[i]
z__s[i] = ss[i] * H + cs[i] * Y_tilde
if i < n - 1:
cs[i+1] = H1( curve, public_keys_hash, Y_tilde, message, z_s[i], z__s[i] )
H1_ver = H1( curve, public_keys_hash, Y_tilde, message, z_s[n-1], z__s[n-1] )
if DEBUG:
print "VERIFY H: %s" % H
for i in range( len( cs ) ):
print "VERIFY c_%d: %d" % ( i, cs[i] )
print "VERIFY s_%d: %d" % ( i, ss[i] )
print "VERIFY Z_%d: %s" % ( i, z_s[i] )
print "VERIFY Z__%d: %s" % ( i, z__s[i] )
print "-----------------------------------------"
print "VERIFY H1_ver==c_0: (%d == %d)" % ( H1_ver, cs[0] )
return cs[0] == H1_ver
def H2( curve, in_str ):
"""
Hash the input as a string and return the hash as an integer.
"""
return curve.hash_to_point( "H2_salt%s" % in_str )
def H1( curve, keys, Y_tilde, message, P1, P2):
"""
The H1 function that hashes a lot of variables
and returns the hash as an integer.
"""
str = "%s,%s,%s,%X,%X,%X,%X" % ( keys, Y_tilde, message,
P1.x, P1.y, P2.x, P2.y)
return curve.hash_to_field( "H1_salt%s" % str )
def get_signature_size( signature ):
public_keys, message, c_0, ss, Y_tilde = signature
# Each public key is 64 bytes (32 bytes per coordinate)
size = 64 * len( public_keys )
size += len( ECHelper.int2bin( c_0 ) )
size += sum( map( lambda s: len( ECHelper.int2bin( s ) ), ss ) )
# Y_tilde is also a point, which again requires 64 bytes
size += 64
return size
def run_test( curve, keys, signer_index ):
signature = sign( curve, keys, signer_index )
assert verify( curve, *signature )
return get_signature_size( signature )
def run_multiple_tests( curve, keys, signer_index=0, tests=1 ):
t_start = time.time()
size = sum( map( lambda _: run_test( curve, keys, signer_index ), range( tests ) ) )
t_end = time.time()
t = t_end - t_start
print "Signing and verifying %d messages with %d keys took %.3f seconds (%.3f s/msg, %.3f ms/msg/key)" \
% ( tests, len( keys ), t, t / tests, 1000 * t / tests / len( keys ) )
print "The %d signatures were %d bytes in total (%.3f b/test, %.3f b/test/key)" % ( tests, size, float(size) / tests, float(size) / tests / len(keys) )
return ( len( keys ), tests, t, size )
def run():
curve = Curve( CURVE )
# Generate private/public key pairs
print "Generating %d key pairs..." % KEY_COUNT
t = time.time()
key_gen_time = keys = map( lambda _: KeyPair( curve ), range( KEY_COUNT ) )
print "Generating %d key pairs took %.3f seconds" % ( KEY_COUNT, time.time() - t )
results = []
for i in [ 2, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500, 1000, 2000, 3000, 5000, 10000]:
results.append( run_multiple_tests( curve, keys[0:i], tests=10 ) )
print repr( results )
if __name__ == "__main__":
run()