88[ ![ CRAN
99status] ( https://www.r-pkg.org/badges/version/logitr )] ( https://CRAN.R-project.org/package=logitr )
1010[ ![ Travis build
11- status] ( https://travis-ci.com/jhelvy/logitr.svg?branch=master )] ( https://travis-ci.com/jhelvy/logitr )
11+ status] ( https://app. travis-ci.com/jhelvy/logitr.svg?branch=master )] ( https://app. travis-ci.com/github /jhelvy/logitr )
1212[ ![ ] ( http://cranlogs.r-pkg.org/badges/grand-total/logitr?color=blue )] ( https://cran.r-project.org/package=logitr )
1313<!-- badges: end -->
1414
@@ -18,26 +18,26 @@ parameterizations](https://jhelvy.github.io/logitr/articles/utility_models.html)
1818
1919The latest version includes support for:
2020
21- - Homogeneous multinomial logit (MNL) models
22- - Heterogeneous mixed logit (MXL) models with normal and log-normal
21+ - Homogeneous multinomial logit (MNL) models
22+ - Heterogeneous mixed logit (MXL) models with normal and log-normal
2323 parameter distributions.
24- - Preference space and WTP space utility parameterizations.
25- - Weighted models to differentially weight individual choice
24+ - Preference space and WTP space utility parameterizations.
25+ - Weighted models to differentially weight individual choice
2626 observations.
27- - Functions for computing WTP from preference space models.
28- - Functions for predicting expected choices and choice probabilities
27+ - Functions for computing WTP from preference space models.
28+ - Functions for predicting expected choices and choice probabilities
2929 for a set (or multiple sets) of alternatives based on an estimated
3030 model.
31- - An option to run a multistart optimization loop that uses different
31+ - An option to run a multistart optimization loop that uses different
3232 random starting points in each iteration to search for different
3333 local minima (useful for non-convex problems like MXL models or
3434 models with WTP space parameterizations).
3535
3636Note: MXL models assume uncorrelated heterogeneity covariances and are
3737estimated using maximum simulated likelihood based on the algorithms in
3838Kenneth Train’s book [ * Discrete Choice Methods with Simulation, 2nd
39- Edition (New York: Cambridge University
40- Press, 2009)* ] ( https://eml.berkeley.edu/books/choice2.html ) .
39+ Edition (New York: Cambridge University Press,
40+ 2009)* ] ( https://eml.berkeley.edu/books/choice2.html ) .
4141
4242## Installation
4343
@@ -69,9 +69,9 @@ for details on how to use **logitr** to estimate models.
6969
7070## Author, Version, and License Information
7171
72- - Author: * John Paul Helveston* < https://www.jhelvy.com/ >
73- - Date First Written: * Sunday, September 28, 2014*
74- - License:
72+ - Author: * John Paul Helveston* < https://www.jhelvy.com/ >
73+ - Date First Written: * Sunday, September 28, 2014*
74+ - License:
7575 [ MIT] ( https://github.com/jhelvy/logitr/blob/master/LICENSE.md )
7676
7777## Citation Information
@@ -82,15 +82,15 @@ it if you cited it - you can get the citation by typing
8282
8383``` r
8484citation(" logitr" )
85- # >
85+ # >
8686# > To cite logitr in publications use:
87- # >
87+ # >
8888# > John Paul Helveston (2021). logitr: Random utility logit models with
8989# > preference and willingness to pay space parameterizations. R package
9090# > version 0.4.0
91- # >
91+ # >
9292# > A BibTeX entry for LaTeX users is
93- # >
93+ # >
9494# > @Manual{,
9595# > title = {logitr: Random Utility Logit Models with Preference and Willingness to Pay Space Parameterizations},
9696# > author = {John Paul Helveston},
0 commit comments