-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_S3DIS.py
219 lines (145 loc) · 6.42 KB
/
main_S3DIS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from ast import parse
import numpy as np
import torch
from utils.test_perform_cal import get_mean_accuracy
import torch.nn as nn
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
import os
from utils.cal_final_result import accuracy_calculation
from Dataloader.S3DIS_random import get_sets
from model.seg.DGCNN_seg import DGCNN_semseg
from sklearn.metrics import confusion_matrix
import argparse
from utils.all_utils import smooth_loss
TIMESTAMP = "{0:%Y-%m-%dT%H-%M-%S/}".format(datetime.now())
def get_parse():
parser=argparse.ArgumentParser(description='argumment')
parser.add_argument('--seed',default=0)
parser.add_argument('--test_area',default=5,type=int)
parser.add_argument('--exp_name',default='DGCNN_area5_ori',type=str)
parser.add_argument('--batch_size',default=10,type=int)
parser.add_argument('--lr',default=0.001)
parser.add_argument('--neighbor',default=20)
parser.add_argument('--data_path',default='/data1/jiajing/worksapce/Algorithm/PointNet/Pointnet_Pointnet2_pytorch/data/stanford_indoor3d/')
parser.add_argument('--epoch',default=100,type=int)
parser.add_argument('--multi_gpu',default=0,type=int)
parser.add_argument('--max_iter',default=6,type=int)
return parser.parse_args()
cfg=get_parse()
def main():
seed=cfg.seed
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled=False
cuda=0
datapath=cfg.data_path
model=DGCNN_semseg(num_cls=13,inpt_length=9)
train_loader,test_loader,valid_loader=get_sets(datapath,batch_size=cfg.batch_size,test_batch=cfg.batch_size,test_area=cfg.test_area)
train_model(model,train_loader,valid_loader,cfg.exp_name,cuda)
def train_model(model,train_loader,valid_loader,exp_name,cuda_n):
assert torch.cuda.is_available()
device=torch.device('cuda:{}'.format(cuda_n))
#这里应该用GPU
if cfg.multi_gpu:
model = nn.DataParallel(model).to(device)
else:
model=model.to(device)
initial_epoch=0
training_epoch=cfg.epoch
loss_func=smooth_loss
optimizer=torch.optim.Adam(model.parameters(),lr=cfg.lr)
lr_schedule=torch.optim.lr_scheduler.MultiStepLR(optimizer,milestones=np.arange(10,training_epoch,20),gamma=0.7)
#here we define train_one_epoch
def train_one_epoch():
iterations=tqdm(train_loader,ncols=100,unit='batch',leave=False)
epsum=run_one_epoch(model,iterations,"train",loss_func=loss_func,optimizer=optimizer,loss_interval=10)
summary={"loss/train":np.mean(epsum['losses'])}
return summary
def eval_one_epoch():
iteration=tqdm(valid_loader,ncols=100,unit='batch',leave=False)
epsum=run_one_epoch(model,iteration,"valid",loss_func=loss_func)
mean_acc=np.mean(epsum['acc'])
summary={'meac':mean_acc}
summary["loss/valid"]=np.mean(epsum['losses'])
return summary,epsum['conf_mat']
exp_path=os.path.join('Exp',exp_name)
if not os.path.exists(exp_path):
os.mkdir(exp_path)
tensorboard=SummaryWriter(log_dir=os.path.join(exp_path,'TB'))
tqdm_epoch=tqdm(range(initial_epoch,training_epoch),unit='epoch',ncols=100)
#build folder for pth_file
# pth_save_path=os.path.join('./pth_file',exp_name)
pth_save_path=os.path.join(exp_path,'pth_file')
if not os.path.exists(pth_save_path):
os.mkdir(pth_save_path)
acc_list=[]
for e in tqdm_epoch:
train_summary=train_one_epoch()
valid_summary,conf_mat=eval_one_epoch()
summary={**train_summary,**valid_summary}
acc_list.append(summary['meac'])
lr_schedule.step()
if np.max(acc_list)==acc_list[-1]:
if cfg.multi_gpu:
summary_saved={**train_summary,
'conf_mat':conf_mat,
'model_state':model.module.state_dict(),
'optimizer_state':optimizer.state_dict()}
else:
summary_saved={**train_summary,
'conf_mat':conf_mat,
'model_state':model.state_dict(),
'optimizer_state':optimizer.state_dict()}
torch.save(summary_saved,os.path.join(pth_save_path,'epoch_{}'.format(e)))
for name,val in summary.items():
tensorboard.add_scalar(name,val,e)
def run_one_epoch(model,tqdm_iter,mode,loss_func=None,optimizer=None,loss_interval=10):
if mode=='train':
model.train()
else:
model.eval()
param_grads=[]
for param in model.parameters():
param_grads+=[param.requires_grad]
param.requires_grad=False
summary={"losses":[],"acc":[]}
device=next(model.parameters()).device
confusion_martrix=np.zeros((13,13))
for i,(x_cpu,y_cpu) in enumerate(tqdm_iter):
x,y=x_cpu.to(device),y_cpu.to(device)
if mode=='train':
optimizer.zero_grad()
logits=model(x)
if loss_func is not None:
re_logit=logits.reshape(-1,logits.shape[-1])
loss=loss_func(re_logit,y.view(-1))
summary['losses']+=[loss.item()]
if mode=='train':
loss.backward()
optimizer.step()
if loss_func is not None and i%loss_interval==0:
tqdm_iter.set_description("Loss: %.3f"%(np.mean(summary['losses'])))
else:
log=logits.cpu().detach().numpy()
lab=y_cpu.numpy()
num_cls=model.num_cls
mean_acc=get_mean_accuracy(log,lab,num_cls)
summary['acc'].append(mean_acc)
label=lab.reshape(-1)
prediction=log.reshape(-1,num_cls)
prediction=np.argmax(prediction,1)
confusion_martrix+=confusion_matrix(label,prediction,labels=np.arange(13))
if i%loss_interval==0:
tqdm_iter.set_description("mea_ac: %.3f"%(np.mean(summary['acc'])))
if mode!='train':
for param,value in zip(model.parameters(),param_grads):
param.requires_grad=value
summary['conf_mat']=confusion_martrix
return summary
if __name__=='__main__':
main()