Skip to content

Commit 7963a2f

Browse files
committed
Updated Results k=5 folds
1 parent 3880d11 commit 7963a2f

26 files changed

+7574
-4341
lines changed

Algorithms/MILBoost.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -103,4 +103,4 @@ def predict(self,test_bags):
103103
for i in range (0,B-1):
104104
out[i]=1-np.prod([1-np.asarray(pij[IbagT[i]])])
105105

106-
return out
106+
return out

data/.DS_Store

0 Bytes
Binary file not shown.

data/musk1_py/bags.pckl

-1,494
This file was deleted.

data/musk1_py/labels.pckl

-36
This file was deleted.

example/example.py

+15-8
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,8 @@
1414
from sklearn import cross_validation
1515
from sklearn import metrics
1616
from data import load_data
17+
from sklearn.utils import shuffle
18+
import random as rand
1719

1820
#Import Algorithms
1921
from MILpy.Algorithms.simpleMIL import simpleMIL
@@ -29,23 +31,28 @@
2931
"""
3032

3133
#Load Data
32-
bags,labels,X = load_data('musk1_scaled') #Musk1 Escalado
33-
#bags,labels,X = load_data('musk1_original') #Musk1 Original ALGO PASA CON ESTA EN EMDD Y MAXDD
34-
#bags,labels,X = load_data('data_gauss') #Gaussian data
35-
#bags,labels,X = load_data('fox_original') #Fox Original
36-
#bags,labels,X = load_data('fox_scaled') #Fox Escalado
34+
#bags,labels,_ = load_data('musk1_scaled') #Musk1 Escalado
35+
#bags,labels,_ = load_data('musk1_original') #Musk1 Original ALGO PASA CON ESTA EN EMDD Y MAXDD
36+
bags,labels,_ = load_data('data_gauss') #Gaussian data
37+
#bags,labels,_ = load_data('fox_original') #Fox Original
38+
#bags,labels,_ = load_data('fox_scaled') #Fox Escalado
3739

3840
seed = 66
3941
#seed = 70
4042
#Split Data
4143
#seed= 90
44+
45+
#Shuffle Data
46+
bags,labels = shuffle(bags, labels, random_state=rand.randint(0, 100))
47+
4248
train_bags, test_bags, train_labels, test_labels = cross_validation.train_test_split(bags, labels, test_size=0.1, random_state=seed)
4349

4450
################
4551
#Bags Of Words #
4652
################
4753
bow_classifier = BOW()
48-
bow_classifier.fit(train_bags, train_labels,k=100,covar_type = 'diag',n_iter = 20)
54+
#bow_classifier.fit(train_bags, train_labels,k=100,covar_type = 'diag',n_iter = 20)
55+
bow_classifier.fit(train_bags, train_labels,k=10,covar_type = 'diag',n_iter = 20)
4956
predictions = bow_classifier.predict(test_bags)
5057
accuracie = np.average(test_labels.T == np.sign(predictions))
5158
print '\n Accuracy: %.2f%%' % (100 * accuracie)
@@ -135,7 +142,7 @@
135142
##########
136143
#Nota Importante: Solo Funciona Con musk1 original.
137144
#Load Data
138-
bags,labels,X = load_data('musk1_original') #Musk1 Original
145+
bags,labels,_ = load_data('musk1_original') #Musk1 Original
139146
seed = 90
140147
train_bags, test_bags, train_labels, test_labels = cross_validation.train_test_split(bags, labels, test_size=0.1, random_state=seed)
141148

@@ -148,7 +155,7 @@
148155
#######
149156
#MILES#
150157
#######
151-
bags,labels,X = load_data('data_gauss') #Gaussian data
158+
bags,labels,_ = load_data('data_gauss') #Gaussian data
152159
seed = 66
153160
train_bags, test_bags, train_labels, test_labels = cross_validation.train_test_split(bags, labels, test_size=0.1, random_state=seed)
154161

example/example2.py

+28-22
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,8 @@
1111
import sys,os
1212
os.chdir('/Users/josemiguelarrieta/Documents/MILpy')
1313
sys.path.append(os.path.realpath('..'))
14+
from sklearn.utils import shuffle
15+
import random as rand
1416
from data import load_data
1517
from MILpy.functions.mil_cross_val import mil_cross_val
1618

@@ -20,64 +22,68 @@
2022
from MILpy.Algorithms.maxDD import maxDD
2123
from MILpy.Algorithms.CKNN import CKNN
2224
from MILpy.Algorithms.EMDD import EMDD
23-
from MILpy.Algorithms.MILES import MILES
2425
from MILpy.Algorithms.BOW import BOW
26+
from MILpy.Algorithms.MILES import MILES
2527

2628
"""
2729
Note: There is an Issue with regars musk1_original and EMDD and maxDD.
2830
"""
2931

3032
#Load Data
31-
#bags,labels,X = load_data('musk1_scaled')
32-
#bags,labels,X = load_data('musk2_scaled') # No finish.
33+
#bags,labels,_ = load_data('musk1_scaled')
34+
#bags,labels,_ = load_data('musk2_scaled')
35+
#bags,labels,_ = load_data('fox_scaled')
36+
#bags,labels,_ = load_data('tiger_scaled')
37+
#bags,labels,_ = load_data('elephant_scaled')
38+
bags,labels,_ = load_data('data_gauss')
3339

34-
bags,labels,X = load_data('fox_scaled') # No finish.
35-
bags,labels,X = load_data('tiger_scaled') # No finish.
36-
bags,labels,X = load_data('elephant_scaled') # No finish.
3740

41+
#Shuffle Data
42+
bags,labels = shuffle(bags, labels, random_state=rand.randint(0, 100))
3843

44+
#Number of Folds
45+
folds=5
3946

4047
bow_classifier = BOW()
41-
parameters_bow = {'k':100,'covar_type':'diag','n_iter':20}
42-
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=bow_classifier, folds=10,parameters=parameters_bow)
48+
#parameters_bow = {'k':100,'covar_type':'diag','n_iter':20}
49+
parameters_bow = {'k':10,'covar_type':'diag','n_iter':20}
50+
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=bow_classifier, folds=folds, parameters=parameters_bow)
4351

4452
SMILa = simpleMIL()
4553
parameters_smil = {'type': 'max'}
4654
#En este me funciono maxDD porque no tiene problem con parametros
47-
accuracie, results_accuracie, auc,results_auc,elapsed = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=10,parameters=parameters_smil,timer=True)
55+
accuracie, results_accuracie, auc,results_auc,elapsed = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=folds, parameters=parameters_smil,timer=True)
4856

4957
parameters_smil = {'type': 'min'}
5058
#En este me funciono maxDD porque no tiene problem con parametros
51-
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=10,parameters=parameters_smil)
59+
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=folds, parameters=parameters_smil)
5260

5361
parameters_smil = {'type': 'extreme'}
5462
#En este me funciono maxDD porque no tiene problem con parametros
55-
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=10,parameters=parameters_smil)
63+
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=folds, parameters=parameters_smil)
5664

5765
parameters_smil = {'type': 'average'}
5866
#En este me funciono maxDD porque no tiene problem con parametros
59-
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=10,parameters=parameters_smil)
67+
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=folds, parameters=parameters_smil)
6068

6169
cknn_classifier = CKNN()
6270
parameters_cknn = {'references': 3, 'citers': 5}
63-
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=cknn_classifier, folds=10,parameters=parameters_cknn)
71+
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=cknn_classifier, folds=folds, parameters=parameters_cknn)
6472

6573
maxDD_classifier = maxDD()
66-
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=maxDD_classifier, folds=10,parameters={})
74+
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=maxDD_classifier, folds=folds, parameters={})
6775

6876
emdd_classifier = EMDD()
69-
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=emdd_classifier, folds=10,parameters={})
77+
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=emdd_classifier, folds=folds, parameters={})
7078

71-
72-
#STOP AQUIIIIII ARREGLAR ESTO
79+
#STOP: Fix This.
7380
#MIL BOOST: Tiene Out y no tiene predicted.
7481

75-
out = []
76-
for i in range(0,1):
77-
milboost_classifier = MILBoost()
78-
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=milboost_classifier, folds=10,parameters={})
79-
out.append(auc)
82+
milboost_classifier = MILBoost()
83+
accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=milboost_classifier, folds=10,parameters={})
84+
8085

8186
#MIL BOOST: Tiene Out y no tiene predicted.
8287

88+
#Stop Here:
8389
#MILES: Tiene Out no tiene predicted.
File renamed without changes.

0 commit comments

Comments
 (0)