|
11 | 11 | import sys,os
|
12 | 12 | os.chdir('/Users/josemiguelarrieta/Documents/MILpy')
|
13 | 13 | sys.path.append(os.path.realpath('..'))
|
| 14 | +from sklearn.utils import shuffle |
| 15 | +import random as rand |
14 | 16 | from data import load_data
|
15 | 17 | from MILpy.functions.mil_cross_val import mil_cross_val
|
16 | 18 |
|
|
20 | 22 | from MILpy.Algorithms.maxDD import maxDD
|
21 | 23 | from MILpy.Algorithms.CKNN import CKNN
|
22 | 24 | from MILpy.Algorithms.EMDD import EMDD
|
23 |
| -from MILpy.Algorithms.MILES import MILES |
24 | 25 | from MILpy.Algorithms.BOW import BOW
|
| 26 | +from MILpy.Algorithms.MILES import MILES |
25 | 27 |
|
26 | 28 | """
|
27 | 29 | Note: There is an Issue with regars musk1_original and EMDD and maxDD.
|
28 | 30 | """
|
29 | 31 |
|
30 | 32 | #Load Data
|
31 |
| -#bags,labels,X = load_data('musk1_scaled') |
32 |
| -#bags,labels,X = load_data('musk2_scaled') # No finish. |
| 33 | +#bags,labels,_ = load_data('musk1_scaled') |
| 34 | +#bags,labels,_ = load_data('musk2_scaled') |
| 35 | +#bags,labels,_ = load_data('fox_scaled') |
| 36 | +#bags,labels,_ = load_data('tiger_scaled') |
| 37 | +#bags,labels,_ = load_data('elephant_scaled') |
| 38 | +bags,labels,_ = load_data('data_gauss') |
33 | 39 |
|
34 |
| -bags,labels,X = load_data('fox_scaled') # No finish. |
35 |
| -bags,labels,X = load_data('tiger_scaled') # No finish. |
36 |
| -bags,labels,X = load_data('elephant_scaled') # No finish. |
37 | 40 |
|
| 41 | +#Shuffle Data |
| 42 | +bags,labels = shuffle(bags, labels, random_state=rand.randint(0, 100)) |
38 | 43 |
|
| 44 | +#Number of Folds |
| 45 | +folds=5 |
39 | 46 |
|
40 | 47 | bow_classifier = BOW()
|
41 |
| -parameters_bow = {'k':100,'covar_type':'diag','n_iter':20} |
42 |
| -accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=bow_classifier, folds=10,parameters=parameters_bow) |
| 48 | +#parameters_bow = {'k':100,'covar_type':'diag','n_iter':20} |
| 49 | +parameters_bow = {'k':10,'covar_type':'diag','n_iter':20} |
| 50 | +accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=bow_classifier, folds=folds, parameters=parameters_bow) |
43 | 51 |
|
44 | 52 | SMILa = simpleMIL()
|
45 | 53 | parameters_smil = {'type': 'max'}
|
46 | 54 | #En este me funciono maxDD porque no tiene problem con parametros
|
47 |
| -accuracie, results_accuracie, auc,results_auc,elapsed = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=10,parameters=parameters_smil,timer=True) |
| 55 | +accuracie, results_accuracie, auc,results_auc,elapsed = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=folds, parameters=parameters_smil,timer=True) |
48 | 56 |
|
49 | 57 | parameters_smil = {'type': 'min'}
|
50 | 58 | #En este me funciono maxDD porque no tiene problem con parametros
|
51 |
| -accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=10,parameters=parameters_smil) |
| 59 | +accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=folds, parameters=parameters_smil) |
52 | 60 |
|
53 | 61 | parameters_smil = {'type': 'extreme'}
|
54 | 62 | #En este me funciono maxDD porque no tiene problem con parametros
|
55 |
| -accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=10,parameters=parameters_smil) |
| 63 | +accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=folds, parameters=parameters_smil) |
56 | 64 |
|
57 | 65 | parameters_smil = {'type': 'average'}
|
58 | 66 | #En este me funciono maxDD porque no tiene problem con parametros
|
59 |
| -accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=10,parameters=parameters_smil) |
| 67 | +accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=SMILa, folds=folds, parameters=parameters_smil) |
60 | 68 |
|
61 | 69 | cknn_classifier = CKNN()
|
62 | 70 | parameters_cknn = {'references': 3, 'citers': 5}
|
63 |
| -accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=cknn_classifier, folds=10,parameters=parameters_cknn) |
| 71 | +accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=cknn_classifier, folds=folds, parameters=parameters_cknn) |
64 | 72 |
|
65 | 73 | maxDD_classifier = maxDD()
|
66 |
| -accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=maxDD_classifier, folds=10,parameters={}) |
| 74 | +accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=maxDD_classifier, folds=folds, parameters={}) |
67 | 75 |
|
68 | 76 | emdd_classifier = EMDD()
|
69 |
| -accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=emdd_classifier, folds=10,parameters={}) |
| 77 | +accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=emdd_classifier, folds=folds, parameters={}) |
70 | 78 |
|
71 |
| - |
72 |
| -#STOP AQUIIIIII ARREGLAR ESTO |
| 79 | +#STOP: Fix This. |
73 | 80 | #MIL BOOST: Tiene Out y no tiene predicted.
|
74 | 81 |
|
75 |
| -out = [] |
76 |
| -for i in range(0,1): |
77 |
| - milboost_classifier = MILBoost() |
78 |
| - accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=milboost_classifier, folds=10,parameters={}) |
79 |
| - out.append(auc) |
| 82 | +milboost_classifier = MILBoost() |
| 83 | +accuracie, results_accuracie, auc,results_auc = mil_cross_val(bags=bags,labels=labels, model=milboost_classifier, folds=10,parameters={}) |
| 84 | + |
80 | 85 |
|
81 | 86 | #MIL BOOST: Tiene Out y no tiene predicted.
|
82 | 87 |
|
| 88 | +#Stop Here: |
83 | 89 | #MILES: Tiene Out no tiene predicted.
|
0 commit comments