-
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathPyOctaveBand.py
250 lines (197 loc) · 7.94 KB
/
PyOctaveBand.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright (c) 2020. Jose M. Requena-Plens
"""
Octave-Band and Fractional Octave-Band filter.
"""
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
# Public methods
__all__ = ['octavefilter', 'getansifrequencies', 'normalizedfreq']
def octavefilter(x, fs, fraction=1, order=6, limits=None, show=0, sigbands =0):
"""
Filter a signal with octave or fractional octave filter bank. This
method uses a Butterworth filter with Second-Order Sections
coefficients. To obtain the correct coefficients, a subsampling is
applied to the signal in each filtered band.
:param x: Signal
:param fs: Sample rate
:param fraction: Bandwidth 'b'. Examples: 1/3-octave b=3, 1-octave b=1,
2/3-octave b = 3/2. [Optional] Default: 1.
:param order: Order of Butterworth filter. [Optional] Default: 6.
:param limits: Minimum and maximum limit frequencies. [Optional] Default
[12,20000]
:param show: Boolean for plot o not the filter response.
:param sigbands: Boolean to also return the signal in the time domain
divided into bands. A list with as many arrays as there are frequency bands.
:returns: Sound Pressure Level and Frequency array
"""
if limits is None:
limits = [12, 20000]
# List type for signal var
x = _typesignal(x)
# Generate frequency array
freq, freq_d, freq_u = _genfreqs(limits, fraction, fs)
# Calculate the downsampling factor (array of integers with size [freq])
factor = _downsamplingfactor(freq_u, fs)
# Get SOS filter coefficients (3D - matrix with size: [freq,order,6])
sos = _buttersosfilter(freq, freq_d, freq_u, fs, order, factor, show)
if sigbands:
# Create array with SPL for each frequency band
spl = np.zeros([len(freq)])
xb = []
for idx in range(len(freq)):
sd = signal.resample(x, round(len(x) / factor[idx]))
y = signal.sosfilt(sos[idx], sd)
spl[idx] = 20 * np.log10(np.std(y) / 2e-5)
xb.append(signal.resample_poly(y,factor[idx],1))
return spl.tolist(), freq, xb
else:
# Create array with SPL for each frequency band
spl = np.zeros([len(freq)])
for idx in range(len(freq)):
sd = signal.resample(x, round(len(x) / factor[idx]))
y = signal.sosfilt(sos[idx], sd)
spl[idx] = 20 * np.log10(np.std(y) / 2e-5)
return spl.tolist(), freq
def _typesignal(x):
if type(x) is list:
return x
elif type(x) is np.ndarray:
return x.tolist()
elif type(x) is tuple:
return list(x)
def _buttersosfilter(freq, freq_d, freq_u, fs, order, factor, show=0):
# Initialize coefficients matrix
sos = [[[]] for i in range(len(freq))]
# Generate coefficients for each frequency band
for idx, (lower, upper) in enumerate(zip(freq_d, freq_u)):
# Downsampling to improve filter coefficients
fsd = fs / factor[idx] # New sampling rate
# Butterworth Filter with SOS coefficients
sos[idx] = signal.butter(
N=order,
Wn=np.array([lower, upper]) / (fsd / 2),
btype='bandpass',
analog=False,
output='sos')
if show:
_showfilter(sos, freq, freq_u, freq_d, fs, factor)
return sos
def _showfilter(sos, freq, freq_u, freq_d, fs, factor):
wn = 8192
w = np.zeros([wn, len(freq)])
h = np.zeros([wn, len(freq)], dtype=np.complex_)
for idx in range(len(freq)):
fsd = fs / factor[idx] # New sampling rate
w[:, idx], h[:, idx] = signal.sosfreqz(
sos[idx],
worN=wn,
whole=False,
fs=fsd)
fig, ax = plt.subplots()
ax.semilogx(w, 20 * np.log10(abs(h) + np.finfo(float).eps), 'b')
ax.grid(which='major')
ax.grid(which='minor', linestyle=':')
ax.set_xlabel(r'Frequency [Hz]')
ax.set_ylabel('Amplitude [dB]')
ax.set_title('Second-Order Sections - Butterworth Filter')
plt.xlim(freq_d[0] * 0.8, freq_u[-1] * 1.2)
plt.ylim(-4, 1)
ax.set_xticks([16, 31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000, 16000])
ax.set_xticklabels(['16', '31.5', '63', '125', '250', '500',
'1k', '2k', '4k', '8k', '16k'])
plt.show()
def _genfreqs(limits, fraction, fs):
# Generate frequencies
freq, freq_d, freq_u = getansifrequencies(fraction, limits)
# Remove outer frequency to prevent filter error (fs/2 < freq)
freq, freq_d, freq_u = _deleteouters(freq, freq_d, freq_u, fs)
return freq, freq_d, freq_u
def normalizedfreq(fraction):
"""
Normalized frequencies for one-octave and third-octave band. [IEC
61260-1-2014]
:param fraction: Octave type, for one octave fraction=1,
for third-octave fraction=3
:type fraction: int
:returns: frequencies array
:rtype: list
"""
predefined = {1: _oneoctave(),
3: _thirdoctave(),
}
return predefined[fraction]
def _thirdoctave():
# IEC 61260 - 1 - 2014 (added 12.5, 16, 20 Hz)
return [12.5, 16, 20, 25, 31.5, 40, 50, 63, 80, 100, 125, 160, 200, 250,
315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000,
5000, 6300, 8000, 10000, 12500, 16000, 20000]
def _oneoctave():
# IEC 61260 - 1 - 2014 (added 16 Hz)
return [16, 31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000, 16000]
def _deleteouters(freq, freq_d, freq_u, fs):
idx = np.asarray(np.where(np.array(freq_u) > fs / 2))
if any(idx[0]):
_printwarn('Low sampling rate, frequencies above fs/2 will be removed')
freq = np.delete(freq, idx).tolist()
freq_d = np.delete(freq_d, idx).tolist()
freq_u = np.delete(freq_u, idx).tolist()
return freq, freq_d, freq_u
def getansifrequencies(fraction, limits=None):
""" ANSI s1.11-2004 && IEC 61260-1-2014
Array of frequencies and its edges according to the ANSI and IEC standard.
:param fraction: Bandwidth 'b'. Examples: 1/3-octave b=3, 1-octave b=1,
2/3-octave b = 3/2
:param limits: It is a list with the minimum and maximum frequency that
the array should have. Example: [12,20000]
:returns: Frequency array, lower edge array and upper edge array
:rtype: list, list, list
"""
if limits is None:
limits = [12, 20000]
# Octave ratio g (ANSI s1.11, 3.2, pg. 2)
g = 10 ** (3 / 10) # Or g = 2
# Reference frequency (ANSI s1.11, 3.4, pg. 2)
fr = 1000
# Get starting index 'x' and first center frequency
x = _initindex(limits[0], fr, g, fraction)
freq = _ratio(g, x, fraction) * fr
# Get each frequency until reach maximum frequency
freq_x = 0
while freq_x * _bandedge(g, fraction) < limits[1]:
# Increase index
x = x + 1
# New frequency
freq_x = _ratio(g, x, fraction) * fr
# Store new frequency
freq = np.append(freq, freq_x)
# Get band-edges
freq_d = freq / _bandedge(g, fraction)
freq_u = freq * _bandedge(g, fraction)
return freq.tolist(), freq_d.tolist(), freq_u.tolist()
def _initindex(f, fr, g, b):
if b % 2: # ODD ('x' solve from ANSI s1.11, eq. 3)
return np.round(
(b * np.log(f / fr) + 30 * np.log(g)) / np.log(g)
)
else: # EVEN ('x' solve from ANSI s1.11, eq. 4)
return np.round(
(2 * b * np.log(f / fr) + 59 * np.log(g)) / (2 * np.log(g))
)
def _ratio(g, x, b):
if b % 2: # ODD (ANSI s1.11, eq. 3)
return g ** ((x - 30) / b)
else: # EVEN (ANSI s1.11, eq. 4)
return g ** ((2 * x - 59) / (2 * b))
def _bandedge(g, b):
# Band-edge ratio (ANSI s1.11, 3.7, pg. 3)
return g ** (1 / (2 * b))
def _printwarn(msg):
print('*********\n' + msg + '\n*********')
def _downsamplingfactor(freq, fs):
guard = 0.10
factor = (np.floor((fs / (2+guard)) / np.array(freq))).astype('int')
for idx in range(len(factor)):
# Factor between 1<factor<50
factor[idx] = max(min(factor[idx], 50), 1)
return factor