@@ -109,7 +109,7 @@ def __init__(self, n_samples, function, initial_subset=None,
109109 self .function = function
110110 self .function_kwds = function_kwds
111111
112- super (CustomSelection , self ).__init__ (n_samples = n_samples ,
112+ super ().__init__ (n_samples = n_samples ,
113113 initial_subset = initial_subset , optimizer = optimizer ,
114114 optimizer_kwds = optimizer_kwds , n_jobs = n_jobs ,
115115 random_state = random_state , verbose = verbose )
@@ -152,11 +152,11 @@ def fit(self, X, y=None, sample_weight=None, sample_cost=None):
152152 The fit step returns this selector object.
153153 """
154154
155- return super (CustomSelection , self ).fit (X , y = y ,
155+ return super ().fit (X , y = y ,
156156 sample_weight = sample_weight , sample_cost = sample_cost )
157157
158158 def _initialize (self , X ):
159- super (CustomSelection , self )._initialize (X )
159+ super ()._initialize (X )
160160
161161 if self .initial_subset is None :
162162 pass
@@ -209,7 +209,7 @@ def _calculate_sieve_gains(self, X, thresholds, idxs):
209209 used by a streaming optimizer.
210210 """
211211
212- super (CustomSelection , self )._calculate_sieve_gains (X ,
212+ super ()._calculate_sieve_gains (X ,
213213 thresholds , idxs )
214214
215215 raise NotImplementedError
@@ -219,7 +219,7 @@ def _select_next(self, X, gain, idx):
219219
220220 self .total_gain += gain
221221
222- super (CustomSelection , self )._select_next (
222+ super ()._select_next (
223223 X , gain , idx )
224224
225225
@@ -321,7 +321,7 @@ def __init__(self, n_samples, function, metric='euclidean',
321321 self .function = function
322322 self .function_kwds = function_kwds
323323
324- super (CustomGraphSelection , self ).__init__ (n_samples = n_samples ,
324+ super ().__init__ (n_samples = n_samples ,
325325 metric = metric , initial_subset = initial_subset , optimizer = optimizer ,
326326 optimizer_kwds = optimizer_kwds , n_jobs = n_jobs ,
327327 random_state = random_state , verbose = verbose )
@@ -364,11 +364,11 @@ def fit(self, X, y=None, sample_weight=None, sample_cost=None):
364364 The fit step returns this selector object.
365365 """
366366
367- return super (CustomGraphSelection , self ).fit (X , y = y ,
367+ return super ().fit (X , y = y ,
368368 sample_weight = sample_weight , sample_cost = sample_cost )
369369
370370 def _initialize (self , X ):
371- super (CustomGraphSelection , self )._initialize (X )
371+ super ()._initialize (X )
372372
373373 if self .initial_subset is None :
374374 pass
@@ -421,7 +421,7 @@ def _calculate_sieve_gains(self, X, thresholds, idxs):
421421 used by a streaming optimizer.
422422 """
423423
424- super (CustomGraphSelection , self )._calculate_sieve_gains (X ,
424+ super ()._calculate_sieve_gains (X ,
425425 thresholds , idxs )
426426
427427 raise NotImplementedError
@@ -431,5 +431,5 @@ def _select_next(self, X, gain, idx):
431431
432432 self .total_gain += gain
433433
434- super (CustomGraphSelection , self )._select_next (
434+ super ()._select_next (
435435 X , gain , idx )
0 commit comments