@@ -287,7 +287,7 @@ df <- as.data.frame(sapply(Zambia[1:5],scale))
287287
288288transforms <- c(" p0" ," p2" ," p3" ," p05" ," pm05" ," pm1" ," pm2" ," p0p0" ," p0p05" ," p0p1" ," p0p2" ," p0p3" ," p0p05" ," p0pm05" ," p0pm1" ," p0pm2" )
289289probs <- gen.probs.gmjmcmc(transforms )
290- probs $ gen <- c(1 , 1 ,0 ,1 ) # Modifications and interactions!
290+ probs $ gen <- c(1 / 3 , 1 / 3 ,0 ,1 / 3 ) # Modifications and interactions!
291291
292292params <- gen.params.gmjmcmc(ncol(df ) - 1 )
293293params $ feat $ D <- 1 # Set depth of features to 1 (still allows for interactions)
@@ -468,7 +468,7 @@ plot(result2a)
468468
469469# Analysis with fractional polynomials
470470probs <- gen.probs.gmjmcmc(transforms )
471- probs $ gen <- c(1 , 1 ,0 ,1 ) # Modifications and interactions!
471+ probs $ gen <- c(1 / 3 , 1 / 3 ,0 ,1 / 3 ) # Modifications and interactions!
472472
473473params <- gen.params.gmjmcmc(ncol(df ) - 1 )
474474params $ feat $ D <- 1 # Set depth of features to 1 (still allows for interactions)
@@ -488,7 +488,7 @@ summary(result2b,tol = 0.05,labels=names(df)[-1])
488488# Analysis with non-linear projections
489489transforms <- c(" sigmoid" )
490490probs <- gen.probs.gmjmcmc(transforms )
491- probs $ gen <- c(0 ,0 ,1 , 1 )
491+ probs $ gen <- c(0 ,0 ,0.5 , 0.5 )
492492
493493params <- gen.params.gmjmcmc(ncol(df ) - 1 )
494494params $ feat $ pop.max = 10
0 commit comments