-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain_retrieval.py
736 lines (607 loc) · 33.4 KB
/
main_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
import os
import time
import random
import argparse
import numpy as np
from tqdm import tqdm
import datetime
from os.path import join, exists
from diffusion_models.resample import create_named_schedule_sampler
import torch
import torch.nn.functional as F
from DiffusionRet.models.tokenization_clip import SimpleTokenizer as ClipTokenizer
from DiffusionRet.dataloaders.data_dataloaders import DATALOADER_DICT
from DiffusionRet.dataloaders.dataloader_msrvtt_retrieval import MSRVTTDataset
from DiffusionRet.models.modeling import DiffusionRet, AllGather, create_gaussian_diffusion
from DiffusionRet.models.optimization import BertAdam
from DiffusionRet.utils.metrics import compute_metrics, tensor_text_to_video_metrics, tensor_video_to_text_sim
from DiffusionRet.utils.comm import is_main_process, synchronize
from DiffusionRet.utils.logger import setup_logger
from DiffusionRet.utils.metric_logger import MetricLogger
import copy
allgather = AllGather.apply
global logger
def get_args(
description='Video-Text as Game Players: Hierarchical Banzhaf Interaction for Cross-Modal Representation Learning'):
parser = argparse.ArgumentParser(description=description)
parser.add_argument("--do_train", type=int, default=0, help="Whether to run training.")
parser.add_argument("--do_eval", type=int, default=0, help="Whether to run evaluation.")
parser.add_argument("--datatype", default="msrvtt", type=str, help="Point the dataset to finetune.")
parser.add_argument('--anno_path', type=str, default='data/MSR-VTT/anns', help='annotation path')
parser.add_argument('--video_path', type=str, default='data/MSR-VTT/videos', help='video path')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--workers', default=4, type=int, help='number of data loading workers (default: 4)')
parser.add_argument('--lr', type=float, default=1e-4, help='initial learning rate')
parser.add_argument('--coef_lr', type=float, default=1e-3, help='coefficient for bert branch.')
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% of training.")
parser.add_argument('--weight_decay', type=float, default=0.2, help='weight decay')
parser.add_argument('--epochs', type=int, default=5, help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--batch_size_val', type=int, default=128, help='batch size eval')
parser.add_argument('--max_words', type=int, default=32, help='max text token number')
parser.add_argument('--max_frames', type=int, default=12, help='max key frames')
parser.add_argument('--video_framerate', type=int, default=1, help='framerate to sample video frame')
parser.add_argument("--device", default='cpu', type=str, help="cpu/cuda")
parser.add_argument("--world_size", default=1, type=int, help="distribted training")
parser.add_argument("--local_rank", default=0, type=int, help="distribted training")
parser.add_argument("--distributed", default=0, type=int, help="multi machine DDP")
parser.add_argument('--n_display', type=int, default=50, help='Information display frequence')
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--base_encoder", default="ViT-B/32", type=str, help="Choose a CLIP version")
parser.add_argument('--agg_module', type=str, default="seqTransf", choices=["None", "seqLSTM", "seqTransf"],
help="choice a feature aggregation module for video.")
parser.add_argument('--interaction', type=str, default='wti', help="interaction type for retrieval.")
parser.add_argument('--num_hidden_layers', type=int, default=4)
parser.add_argument("--stage", default='generation', choices=['discrimination', 'generation'], type=str)
parser.add_argument('--temp', type=float, default=1)
parser.add_argument('--d_temp', type=float, default=100)
parser.add_argument("--init_model", default=None, type=str, required=False, help="Initial model.")
parser.add_argument("--noise_schedule", default='cosine', choices=['linear', 'cosine'], type=str,
help="Noise schedule type")
parser.add_argument("--diffusion_steps", default=1000, type=int,
help="Number of diffusion steps (denoted T in the paper)")
parser.add_argument("--sigma_small", default=True, type=bool, help="Use smaller sigma values.")
parser.add_argument("--neg", default=0, type=int, choices=[-1, 0])
parser.add_argument("--num", default=127, type=int)
parser.add_argument("--t2v_num", default=32, type=int)
parser.add_argument("--v2t_num", default=32, type=int)
parser.add_argument("--t2v_temp", default=1, type=float)
parser.add_argument("--v2t_temp", default=1, type=float)
parser.add_argument("--t2v_alpha", default=1, type=float)
parser.add_argument("--v2t_alpha", default=1, type=float)
parser.add_argument('--moment', type=float, default=0.99)
args = parser.parse_args()
return args
def set_seed_logger(args):
global logger
# predefining random initial seeds
random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
if torch.cuda.is_available():
torch.distributed.init_process_group(backend="nccl")
torch.cuda.set_device(args.local_rank)
args.device = torch.device("cuda", args.local_rank)
args.world_size = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
if torch.cuda.is_available():
torch.distributed.barrier()
logger.info("local_rank: {} world_size: {}".format(args.local_rank, args.world_size))
if args.batch_size % args.world_size != 0 or args.batch_size_val % args.world_size != 0:
raise ValueError(
"Invalid batch_size/batch_size_val and world_size parameter: {}%{} and {}%{}, should be == 0".format(
args.batch_size, args.world_size, args.batch_size_val, args.world_size))
logger.info("Effective parameters:")
for key in sorted(args.__dict__):
logger.info(" <<< {}: {}".format(key, args.__dict__[key]))
return args
def build_model(args):
model = DiffusionRet(args)
if args.init_model:
if not exists(args.init_model):
raise FileNotFoundError
model_state_dict = torch.load(args.init_model, map_location='cpu')
model.load_state_dict(model_state_dict, strict=False)
model.to(args.device)
return model
def build_dataloader(args):
## ####################################
# dataloader loading
## ####################################
tokenizer = ClipTokenizer()
assert args.datatype in DATALOADER_DICT
assert DATALOADER_DICT[args.datatype]["test"] is not None or DATALOADER_DICT[args.datatype]["val"] is not None
test_dataloader, test_length = None, 0
if DATALOADER_DICT[args.datatype]["test"] is not None:
test_dataloader, test_length = DATALOADER_DICT[args.datatype]["test"](args, tokenizer)
if DATALOADER_DICT[args.datatype]["val"] is not None:
val_dataloader, val_length = DATALOADER_DICT[args.datatype]["val"](args, tokenizer, subset="val")
else:
val_dataloader, val_length = test_dataloader, test_length
## report validation results if the ["test"] is None
if test_dataloader is None:
test_dataloader, test_length = val_dataloader, val_length
if isinstance(test_length, int):
logger.info("***** Running test *****")
logger.info(" Num examples = %d", test_length)
logger.info(" Batch size = %d", args.batch_size_val)
logger.info(" Num steps = %d", len(test_dataloader))
logger.info("***** Running val *****")
logger.info(" Num examples = %d", val_length)
elif len(test_length) == 2:
logger.info("***** Running test *****")
logger.info(" Num examples = %dt %dv", test_length[0], test_length[1])
logger.info(" Batch size = %d", args.batch_size_val)
logger.info(" Num steps = %d %d", len(test_dataloader[0]), len(test_dataloader[1]))
logger.info("***** Running val *****")
logger.info(" Num examples = %dt %dv", val_length[0], val_length[1])
if args.do_train:
train_dataloader, train_length, train_sampler = DATALOADER_DICT[args.datatype]["train"](args, tokenizer)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", train_length)
logger.info(" Batch size = %d", args.batch_size)
logger.info(" Num steps = %d", len(train_dataloader) * args.epochs)
else:
train_dataloader, train_sampler = None, None
return test_dataloader, val_dataloader, train_dataloader, train_sampler
def prep_optimizer(args, model, num_train_optimization_steps, local_rank):
if hasattr(model, 'module'):
model = model.module
lr = args.lr # 0.0001
coef_lr = args.coef_lr # 0.001
weight_decay = args.weight_decay # 0.2
warmup_proportion = args.warmup_proportion
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
decay_param_tp = [(n, p) for n, p in param_optimizer if not any(nd in n for nd in no_decay)]
no_decay_param_tp = [(n, p) for n, p in param_optimizer if any(nd in n for nd in no_decay)]
decay_clip_param_tp = [(n, p) for n, p in decay_param_tp if "clip." in n]
decay_noclip_param_tp = [(n, p) for n, p in decay_param_tp if "clip." not in n]
no_decay_clip_param_tp = [(n, p) for n, p in no_decay_param_tp if "clip." in n]
no_decay_noclip_param_tp = [(n, p) for n, p in no_decay_param_tp if "clip." not in n]
optimizer_grouped_parameters = [
{'params': [p for n, p in decay_clip_param_tp], 'weight_decay': weight_decay, 'lr': lr * coef_lr},
{'params': [p for n, p in decay_noclip_param_tp], 'weight_decay': weight_decay},
{'params': [p for n, p in no_decay_clip_param_tp], 'weight_decay': 0.0, 'lr': lr * coef_lr},
{'params': [p for n, p in no_decay_noclip_param_tp], 'weight_decay': 0.0}
]
scheduler = None
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.lr, warmup=warmup_proportion,
schedule='warmup_cosine', b1=0.9, b2=0.98, e=1e-6,
t_total=num_train_optimization_steps, weight_decay=weight_decay,
max_grad_norm=1.0)
if torch.cuda.is_available():
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank,
find_unused_parameters=True)
return optimizer, scheduler, model
def save_model(epoch, args, model, type_name=""):
# Only save the model it-self
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = join(
args.output_dir, "pytorch_model.bin.{}{}".format("" if type_name == "" else type_name + ".", epoch))
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Model saved to %s", output_model_file)
return output_model_file
def reduce_loss(loss, args):
world_size = args.world_size
if world_size < 2:
return loss
with torch.no_grad():
torch.distributed.reduce(loss, dst=0)
if torch.distributed.get_rank() == 0:
# only main process gets accumulated, so only divide by
# world_size in this case
loss /= world_size
return loss
def train_epoch(epoch, args, model, train_dataloader, device, n_gpu, optimizer,
scheduler, global_step, max_steps, val_dataloader, schedule_sampler, diffusion):
global logger
global best_score
global meters
global ema_model
def _update_ema_variables(model, ema_model, alpha, global_step):
# alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
torch.cuda.empty_cache()
model.train()
log_step = args.n_display
total_loss = 0
end = time.time()
logit_scale = 0
for step, batch in enumerate(train_dataloader, start=1):
global_step += 1
data_time = time.time() - end
if n_gpu == 1:
# multi-gpu does scattering it-self
batch = tuple(t.to(device=device, non_blocking=True) for t in batch)
text_ids, text_mask, video, video_mask, inds, idx = batch
loss, discrimination_loss, generation_loss = model(text_ids, text_mask, video, video_mask, idx,
global_step, schedule_sampler, diffusion)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
discrimination_loss = discrimination_loss.mean()
generation_loss = generation_loss.mean()
with torch.autograd.detect_anomaly():
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
if scheduler is not None:
scheduler.step() # Update learning rate schedule
optimizer.zero_grad()
# https://github.com/openai/CLIP/issues/46
if hasattr(model, 'module'):
torch.clamp_(model.module.clip.logit_scale.data, max=np.log(100))
logit_scale = model.module.clip.logit_scale.exp().item()
else:
torch.clamp_(model.clip.logit_scale.data, max=np.log(100))
logit_scale = model.clip.logit_scale.exp().item()
_update_ema_variables(model, ema_model, args.moment, epoch * len(train_dataloader) + step)
batch_time = time.time() - end
end = time.time()
reduced_l = reduce_loss(loss, args)
reduced_discrimination_loss = reduce_loss(discrimination_loss, args)
reduced_generation_loss = reduce_loss(generation_loss, args)
meters.update(time=batch_time, data=data_time, loss=float(reduced_l),
discrimination_loss=float(reduced_discrimination_loss),
generation_loss=float(reduced_generation_loss))
eta_seconds = meters.time.global_avg * (max_steps - global_step)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if (global_step % log_step == 0 or global_step == 1) and is_main_process():
logger.info(
meters.delimiter.join(
[
"eta: {eta}",
"epoch: {epoch}/{max_epoch}",
"iteration: {iteration}/{max_iteration}",
"{meters}",
"lr: {lr}",
"logit_scale: {logit_scale:.2f}"
"max mem: {memory:.0f}",
]
).format(
eta=eta_string,
epoch=epoch,
max_epoch=args.epochs,
iteration=global_step,
max_iteration=max_steps,
meters=str(meters),
lr="/".join([str('%.9f' % itm) for itm in sorted(list(set(optimizer.get_lr())))]),
logit_scale=logit_scale,
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0,
)
)
if global_step % (log_step * 3) == 0 or global_step == 1:
R1 = eval_epoch(args, model, val_dataloader, args.device, diffusion)
ema_R1 = eval_epoch(args, ema_model, val_dataloader, args.device, diffusion, "ema ")
# output_model_file = save_model(epoch, args, model, type_name="")
# output_ema_model_file = save_model(epoch, args, ema_model, type_name="ema")
if best_score <= max(R1, ema_R1):
if R1 < ema_R1:
best_score = ema_R1
# best_output_model_file = output_ema_model_file
torch.save(ema_model.module.state_dict() if hasattr(ema_model, 'module') else ema_model.state_dict(),
'best.pth')
else:
best_score = R1
# best_output_model_file = output_model_file
torch.save(model.module.state_dict() if hasattr(model, 'module') else model.state_dict(),
'best.pth')
model.train()
total_loss = total_loss / len(train_dataloader)
return total_loss, global_step
def _run_on_single_gpu(args, model, t_mask_list, v_mask_list, t_feat_list, v_feat_list,
cls_list, diffusion, mini_batch=32):
mini_batch = args.t2v_num
logger.info('[finish] map to main gpu')
batch_t_mask = torch.split(t_mask_list, mini_batch)
batch_v_mask = torch.split(v_mask_list, mini_batch)
batch_t_feat = torch.split(t_feat_list, mini_batch)
batch_v_feat = torch.split(v_feat_list, mini_batch)
batch_cls_feat = torch.split(cls_list, mini_batch)
sim_matrix, _batch_t_feat, _batch_v_feat = [], [], []
logger.info('[finish] map to main gpu')
with torch.no_grad():
for idx1, (t_mask, t_feat, cls) in enumerate(zip(batch_t_mask, batch_t_feat, batch_cls_feat)):
each_row = []
for idx2, (v_mask, v_feat) in enumerate(zip(batch_v_mask, batch_v_feat)):
logits, _, *_tmp = model.get_similarity_logits(t_feat, cls, v_feat, t_mask, v_mask)
logits = logits.cpu().detach().numpy()
each_row.append(logits)
each_row = np.concatenate(tuple(each_row), axis=-1)
sim_matrix.append(each_row)
sim_matrix = np.concatenate(tuple(sim_matrix), axis=0)
if args.stage == "discrimination":
return sim_matrix, sim_matrix.T
logger.info('diffusion')
new_t2v_matrix, new_v2t_matrix = [], []
_sim_matrix = torch.from_numpy(sim_matrix).to(t_feat_list.device)
t2v_sim_matrix = _sim_matrix
v2t_sim_matrix = _sim_matrix
batch_t2v_matrix = torch.split(t2v_sim_matrix.clone(), mini_batch)
batch_v2t_matrix = torch.split(v2t_sim_matrix.T.clone(), mini_batch)
all_t_feat, all_v_feat = torch.cat(batch_cls_feat, dim=0), torch.cat(batch_v_feat, dim=0)
with torch.no_grad():
for idx1, (t2v_sim, t_feat) in enumerate(zip(batch_t2v_matrix, batch_cls_feat)):
video_embeds, ids, mask = [], [], []
for b in range(t2v_sim.size(0)):
_, neg_idx = t2v_sim[b].topk(args.t2v_num, largest=True, sorted=True)
ids.append(neg_idx)
temp = []
temp_mask = []
for i in neg_idx:
temp.append(all_v_feat[i])
temp_mask.append(v_mask_list[i])
video_embeds.append(torch.stack(temp, dim=0))
mask.append(torch.stack(temp_mask, dim=0))
video_embeds = torch.stack(video_embeds, dim=0) # b_t, b_v, -1, 512
mask = torch.stack(mask, dim=0)
sample = diffusion.ddim_sample_loop(
model.diffusion_model,
(t_feat.size(0), args.t2v_num),
clip_denoised=True,
model_kwargs={"text_emb": t_feat,
"video_emb": video_embeds,
"video_mask": mask},
)
sample = F.softmax(sample * args.t2v_temp, dim=-1)
for i in range(t2v_sim.size(0)):
for _i, j in enumerate(ids[i]):
t2v_sim[i, j] += sample[i, _i] * args.t2v_alpha
new_t2v_matrix.append(t2v_sim)
for idx1, (v2t_sim, v_feat, v_mask) in enumerate(zip(batch_v2t_matrix, batch_v_feat, batch_v_mask)):
text_embeds, ids, video_embeds = [], [], []
for b in range(v2t_sim.size(0)):
_, neg_idx = v2t_sim[b].topk(args.v2t_num, largest=True, sorted=True)
ids.append(neg_idx)
temp0, temp1 = [], []
for i in neg_idx:
temp1.append(all_t_feat[i])
text_embeds.append(torch.stack(temp1, dim=0))
text_embeds = torch.stack(text_embeds, dim=0)
sample = diffusion.ddim_sample_loop(
model.diffusion_model_v,
(v_feat.size(0), args.v2t_num),
clip_denoised=True,
model_kwargs={"text_emb": text_embeds,
"video_emb": v_feat,
"video_mask": v_mask},
)
sample = F.softmax(sample * args.v2t_temp, dim=-1)
for i in range(v2t_sim.size(0)):
for _i, j in enumerate(ids[i]):
v2t_sim[i, j] += sample[i, _i] * args.v2t_alpha
new_v2t_matrix.append(v2t_sim)
new_t2v_matrix = torch.cat(new_t2v_matrix, dim=0)
new_v2t_matrix = torch.cat(new_v2t_matrix, dim=0)
new_t2v_matrix = new_t2v_matrix.cpu().numpy()
new_v2t_matrix = new_v2t_matrix.cpu().numpy()
return new_t2v_matrix, new_v2t_matrix
def eval_epoch(args, model, test_dataloader, device, diffusion, type=""):
if hasattr(model, 'module'):
model = model.module.to(device)
else:
model = model.to(device)
# #################################################################
## below variables are used to multi-sentences retrieval
# multi_sentence_: important tag for eval
# cut_off_points: used to tag the label when calculate the metric
# sentence_num: used to cut the sentence representation
# video_num: used to cut the video representation
# #################################################################
multi_sentence_ = False
cut_off_points_, sentence_num_, video_num_ = [], -1, -1
if hasattr(test_dataloader.dataset, 'multi_sentence_per_video') \
and test_dataloader.dataset.multi_sentence_per_video:
multi_sentence_ = True
cut_off_points_ = test_dataloader.dataset.cut_off_points
sentence_num_ = test_dataloader.dataset.sentence_num
video_num_ = test_dataloader.dataset.video_num
cut_off_points_ = [itm - 1 for itm in cut_off_points_]
if multi_sentence_:
logger.warning("Eval under the multi-sentence per video clip setting.")
logger.warning("sentence num: {}, video num: {}".format(sentence_num_, video_num_))
model.eval()
# ----------------------------
# 1. cache the features
# ----------------------------
batch_mask_t, batch_mask_v, batch_feat_t, batch_feat_v, ids_t, ids_v = [], [], [], [], [], []
batch_cls = []
with torch.no_grad():
tic = time.time()
if multi_sentence_: # multi-sentences retrieval means: one clip has two or more descriptions.
total_video_num = 0
logger.info('[start] extract text+video feature')
for batch in tqdm(test_dataloader):
batch = tuple(t.to(device) for t in batch)
text_ids, text_mask, video, video_mask, inds, _ = batch
b, *_t = video.shape
text_feat, cls = model.get_text_feat(text_ids, text_mask)
ids_t.append(inds)
batch_mask_t.append(text_mask)
batch_feat_t.append(text_feat)
batch_cls.append(cls)
video_feat = model.get_video_feat(video, video_mask)
batch_mask_v.append(video_mask)
batch_feat_v.append(video_feat)
total_video_num += b
ids_t = torch.cat(ids_t, dim=0).squeeze()
batch_mask_t = torch.cat(batch_mask_t, dim=0)
batch_mask_v = torch.cat(batch_mask_v, dim=0)
batch_feat_t = torch.cat(batch_feat_t, dim=0)
batch_feat_v = torch.cat(batch_feat_v, dim=0)
batch_cls = torch.cat(batch_cls, dim=0)
_batch_feat_v, _batch_mask_v = [], []
for i in range(len(ids_t)):
if ids_t[i] in cut_off_points_:
_batch_feat_v.append(batch_feat_v[i])
_batch_mask_v.append(batch_mask_v[i])
batch_feat_v = torch.stack(_batch_feat_v, dim=0)
batch_mask_v = torch.stack(_batch_mask_v, dim=0)
logger.info('[finish] extract text+video feature')
else:
logger.info('[start] extract text+video feature')
for batch in tqdm(test_dataloader):
batch = tuple(t.to(device) for t in batch)
text_ids, text_mask, video, video_mask, inds, _ = batch
video_mask = video_mask.view(-1, video_mask.shape[-1])
text_feat, video_feat, cls = model.get_text_video_feat(text_ids, text_mask, video, video_mask)
ids_t.append(inds)
batch_mask_t.append(text_mask)
batch_mask_v.append(video_mask)
batch_feat_t.append(text_feat)
batch_feat_v.append(video_feat)
batch_cls.append(cls)
ids_t = allgather(torch.cat(ids_t, dim=0), args).squeeze()
batch_mask_t = allgather(torch.cat(batch_mask_t, dim=0), args)
batch_mask_v = allgather(torch.cat(batch_mask_v, dim=0), args)
batch_feat_t = allgather(torch.cat(batch_feat_t, dim=0), args)
batch_feat_v = allgather(torch.cat(batch_feat_v, dim=0), args)
batch_cls = allgather(torch.cat(batch_cls, dim=0), args)
batch_mask_t[ids_t] = batch_mask_t.clone()
batch_mask_v[ids_t] = batch_mask_v.clone()
batch_feat_t[ids_t] = batch_feat_t.clone()
batch_feat_v[ids_t] = batch_feat_v.clone()
batch_cls[ids_t] = batch_cls.clone()
batch_mask_t = batch_mask_t[:ids_t.max() + 1, ...]
batch_mask_v = batch_mask_v[:ids_t.max() + 1, ...]
batch_feat_t = batch_feat_t[:ids_t.max() + 1, ...]
batch_feat_v = batch_feat_v[:ids_t.max() + 1, ...]
batch_cls = batch_cls[:ids_t.max() + 1, ...]
logger.info('[finish] extract text+video feature')
toc1 = time.time()
logger.info('{} {} {} {}'.format(len(batch_mask_t), len(batch_mask_v), len(batch_feat_t), len(batch_feat_v)))
# ----------------------------------
# 2. calculate the similarity
# ----------------------------------
logger.info('[start] calculate the similarity')
with torch.no_grad():
new_t2v_matrix, new_v2t_matrix = _run_on_single_gpu(args, model, batch_mask_t,
batch_mask_v, batch_feat_t, batch_feat_v,
batch_cls, diffusion)
sim_matrix = new_t2v_matrix
logger.info('[end] calculate the similarity')
toc2 = time.time()
logger.info('[start] compute_metrics')
if multi_sentence_:
new_v2t_matrix = new_v2t_matrix.T
logger.info("before reshape, sim matrix size: {} x {}".format(sim_matrix.shape[0], sim_matrix.shape[1]))
cut_off_points2len_ = [itm + 1 for itm in cut_off_points_]
max_length = max([e_ - s_ for s_, e_ in zip([0] + cut_off_points2len_[:-1], cut_off_points2len_)])
new_t2v_matrix_new, new_v2t_matrix_new = [], [], []
for s_, e_ in zip([0] + cut_off_points2len_[:-1], cut_off_points2len_):
new_t2v_matrix_new.append(np.concatenate((new_t2v_matrix[s_:e_],
np.full((max_length - e_ + s_, sim_matrix.shape[1]), -np.inf)),
axis=0))
new_v2t_matrix_new.append(np.concatenate((new_v2t_matrix[s_:e_],
np.full((max_length - e_ + s_, sim_matrix.shape[1]), -np.inf)),
axis=0))
new_t2v_matrix_new = np.stack(tuple(new_t2v_matrix_new), axis=0)
new_v2t_matrix_new = np.stack(tuple(new_v2t_matrix_new), axis=0)
logger.info("after reshape, new t2v matrix size: {} x {} x {}".
format(new_t2v_matrix_new.shape[0], new_t2v_matrix_new.shape[1], new_t2v_matrix_new.shape[2]))
logger.info("after reshape, new v2t matrix size: {} x {} x {}".
format(new_v2t_matrix_new.shape[0], new_v2t_matrix_new.shape[1], new_v2t_matrix_new.shape[2]))
new_tv_metrics = tensor_text_to_video_metrics(new_t2v_matrix_new)
new_vt_metrics = compute_metrics(tensor_video_to_text_sim(new_v2t_matrix_new))
else:
logger.info("sim matrix size: {}, {}".format(sim_matrix.shape[0], sim_matrix.shape[1]))
new_tv_metrics = compute_metrics(new_t2v_matrix)
new_vt_metrics = compute_metrics(new_v2t_matrix)
logger.info('\t Length-T: {}, Length-V:{}'.format(len(sim_matrix), len(sim_matrix[0])))
logger.info('[end] compute_metrics')
toc3 = time.time()
logger.info("time profile: feat {:.1f}s match {:.5f}s metrics {:.5f}s".format(toc1 - tic, toc2 - toc1, toc3 - toc2))
logger.info(
type + "Text-to-Video: R@1: {:.1f} - R@5: {:.1f} - R@10: {:.1f} - R@50: {:.1f} - Median R: {:.1f} - Mean R: {:.1f}".
format(new_tv_metrics['R1'], new_tv_metrics['R5'], new_tv_metrics['R10'], new_tv_metrics['R50'],
new_tv_metrics['MR'], new_tv_metrics['MeanR']))
logger.info(
type + "Video-to-Text: R@1: {:.1f} - R@5: {:.1f} - R@10: {:.1f} - R@50: {:.1f} - Median R: {:.1f} - Mean R: {:.1f}".
format(new_vt_metrics['R1'], new_vt_metrics['R5'], new_vt_metrics['R10'], new_vt_metrics['R50'],
new_vt_metrics['MR'], new_vt_metrics['MeanR']))
return new_tv_metrics['R1']
def main():
global logger
global best_score
global meters
global ema_model
meters = MetricLogger(delimiter=" ")
args = get_args()
if not exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
logger = setup_logger('tvr', args.output_dir, args.local_rank)
args = set_seed_logger(args)
model = build_model(args)
ema_model = build_model(args)
for param in ema_model.parameters():
param.detach_()
test_dataloader, val_dataloader, train_dataloader, train_sampler = build_dataloader(args)
diffusion = create_gaussian_diffusion(args)
schedule_sampler = create_named_schedule_sampler('uniform', diffusion)
## ####################################
# train and eval
## ####################################
if args.do_train:
tic = time.time()
max_steps = len(train_dataloader) * args.epochs
_max_steps = len(train_dataloader) * 5
optimizer, scheduler, model = prep_optimizer(args, model, _max_steps, args.local_rank)
best_score = 0.00001
best_output_model_file = "None"
global_step = 0
for epoch in range(args.epochs):
if train_sampler is not None: train_sampler.set_epoch(epoch)
synchronize()
torch.cuda.empty_cache()
tr_loss, global_step = train_epoch(epoch, args, model, train_dataloader,
args.device, args.world_size, optimizer,
scheduler, global_step, max_steps, val_dataloader,
schedule_sampler, diffusion)
torch.cuda.empty_cache()
R1 = eval_epoch(args, model, val_dataloader, args.device, diffusion)
ema_R1 = eval_epoch(args, ema_model, test_dataloader, args.device, diffusion, "ema ")
torch.cuda.empty_cache()
synchronize()
if args.local_rank == 0:
# output_model_file = save_model(epoch, args, model, type_name="")
# output_ema_model_file = save_model(epoch, args, ema_model, type_name="ema")
if best_score <= max(R1, ema_R1):
if R1 < ema_R1:
best_score = ema_R1
# best_output_model_file = output_ema_model_file
torch.save(ema_model.module.state_dict() if hasattr(ema_model, 'module') else ema_model.state_dict(),
'best.pth')
else:
best_score = R1
# best_output_model_file = output_model_file
torch.save(model.module.state_dict() if hasattr(model, 'module') else model.state_dict(),
'best.pth')
synchronize()
toc = time.time() - tic
training_time = time.strftime("%Hh %Mmin %Ss", time.gmtime(toc))
logger.info("*" * 20 + '\n' + f'training finished with {training_time}' + "*" * 20 + '\n')
# test on the best checkpoint
model = model.module
if args.local_rank == 0:
model.load_state_dict(torch.load('best.pth', map_location='cpu'), strict=False)
if torch.cuda.is_available():
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
find_unused_parameters=True)
torch.cuda.empty_cache()
eval_epoch(args, model, test_dataloader, args.device, diffusion)
synchronize()
elif args.do_eval:
eval_epoch(args, model, test_dataloader, args.device, diffusion)
if __name__ == "__main__":
main()