@@ -48,6 +48,7 @@ model <- cmp(formula = ninsect ~ extract,
48
48
data = sitophilus )
49
49
50
50
# Methods --------------------------------------------------------------
51
+
51
52
print(model )
52
53
# >
53
54
# > COM-Poisson regression models
@@ -57,14 +58,15 @@ print(model)
57
58
# >
58
59
# > Mean coefficients:
59
60
# > (Intercept) extractLeaf extractBranch extractSeed
60
- # > 3.449860 -0.006594 -0.052379 -3.310863
61
+ # > 3.449861 -0.006596 -0.052377 -3.311192
61
62
# >
62
63
# > Dispersion coefficients:
63
64
# > (Intercept) extractLeaf extractBranch extractSeed
64
- # > -0.6652 -0.3831 -0.3724 -0.1186
65
+ # > -0.6652 -0.3832 -0.3724 -0.1177
65
66
# >
66
67
# > Residual degrees of freedom: 32
67
- # > Minus twice the log-likelihood: 242.8278
68
+ # > Minus twice the log-likelihood: 242.8279
69
+
68
70
summary(model )
69
71
# >
70
72
# > Individual Wald-tests for COM-Poisson regression models
@@ -74,22 +76,23 @@ summary(model)
74
76
# >
75
77
# > Mean coefficients:
76
78
# > Estimate Std. Error Z value Pr(>|z|)
77
- # > (Intercept) 3.449860 0.077995 44.232 < 2e-16 ***
78
- # > extractLeaf -0.006594 0.122209 -0.054 0.957
79
- # > extractBranch -0.052379 0.123463 -0.424 0.671
80
- # > extractSeed -3.310863 0.543822 -6.088 1.14e-09 ***
79
+ # > (Intercept) 3.449861 0.077995 44.232 < 2e-16 ***
80
+ # > extractLeaf -0.006596 0.122210 -0.054 0.957
81
+ # > extractBranch -0.052377 0.123462 -0.424 0.671
82
+ # > extractSeed -3.311192 0.541399 -6.116 9.6e-10 ***
81
83
# > ---
82
84
# > Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
83
85
# >
84
86
# > Dispersion coefficients:
85
87
# > Estimate Std. Error Z value Pr(>|z|)
86
88
# > (Intercept) -0.6652 0.4573 -1.455 0.146
87
- # > extractLeaf -0.3831 0.6509 -0.589 0.556
88
- # > extractBranch -0.3724 0.6514 -0.572 0.567
89
- # > extractSeed -0.1186 1.5502 -0.077 0.939
89
+ # > extractLeaf -0.3832 0.6509 -0.589 0.556
90
+ # > extractBranch -0.3724 0.6514 -0.572 0.568
91
+ # > extractSeed -0.1177 1.5464 -0.076 0.939
90
92
# >
91
93
# > Residual degrees of freedom: 32
92
- # > Minus twice the log-likelihood: 242.8278
94
+ # > Minus twice the log-likelihood: 242.8279
95
+
93
96
equitest(model )
94
97
# >
95
98
# > Likelihood ratio test for equidispersion
@@ -108,14 +111,14 @@ predict(model,
108
111
se.fit = TRUE ,
109
112
augment_data = TRUE )
110
113
# > extract what fit ste
111
- # > 1 Leaf mean 31.2889797 2.9437657
112
- # > 2 Branch mean 29.8887063 2.8605423
113
- # > 3 Seed mean 1.1491206 0.3120492
114
- # > 4 Control mean 31.4959708 2.4565258
115
- # > 5 Leaf dispersion 0.3505199 0.1623447
116
- # > 6 Branch dispersion 0.3542934 0.1643381
117
- # > 7 Seed dispersion 0.4566733 0.3412895
118
- # > 8 Control dispersion 0.5141727 0.2351421
114
+ # > 1 Leaf mean 31.2889190 2.9438074
115
+ # > 2 Branch mean 29.8887880 2.8605146
116
+ # > 3 Seed mean 1.1487432 0.3120589
117
+ # > 4 Control mean 31.4959985 2.4565378
118
+ # > 5 Leaf dispersion 0.3505090 0.1623430
119
+ # > 6 Branch dispersion 0.3542998 0.1643400
120
+ # > 7 Seed dispersion 0.4570660 0.3423450
121
+ # > 8 Control dispersion 0.5141684 0.2351420
119
122
```
120
123
121
124
Currently, the methods implemented for ` "cmpreg" ` objects are
0 commit comments